Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep-Oct;10(5):e425-e431.
doi: 10.1016/j.prro.2020.01.009. Epub 2020 Jan 28.

Technical Report: Diagnostic Scan-Based Planning (DSBP), A Method to Improve the Speed and Safety of Radiation Therapy for the Treatment of Critically Ill Patients

Affiliations

Technical Report: Diagnostic Scan-Based Planning (DSBP), A Method to Improve the Speed and Safety of Radiation Therapy for the Treatment of Critically Ill Patients

Gordon Glober et al. Pract Radiat Oncol. 2020 Sep-Oct.

Abstract

Purpose: Treating critically ill patients in radiation oncology departments poses multiple safety risks. This study describes a method to improve the speed of radiation treatment for patients in the intensive care unit by eliminating the need for computed tomography (CT) simulation or on-table treatment planning using patients' previously acquired diagnostic CT scans.

Methods and materials: Initially, a retrospective planning study was performed to assess the applicability and safety of diagnostic scan-based planning (DSBP) for 3 typical indications for radiation therapy in patients in the intensive care unit: heterotopic ossification (10), spine metastases (cord compression; 10), and obstructive lung lesions (5). After identification of an appropriate diagnostic CT scan, treatment planning was performed using the diagnostic scan data set. These treatment plans were then transferred to the patients' simulation scans, and a dosimetric comparison was performed between the 2 sets of plans. Additionally, a time study of the first 10 patients treated with DSBP in our department was performed.

Results: The retrospective analysis demonstrated that DSBP resulted in treatment plans that, when transferred to the CT simulation data sets, provided excellent target coverage, a median D95% of 96% (range, 86%-100%) of the prescription dose with acceptable hot spots, and a median Dmax108% (range, 102%-113%). Subsequently, DSBP has been used for 10 critically ill patients. The patients were treated without CT simulation, and the median time between patient check-in to the department and completion of radiation therapy was 28 minutes (range, 18-47 minutes.) CONCLUSIONS: This study demonstrates that it is possible to safely use DSBP for the treatment of critically ill patients. This method has the potential to simplify the treatment process and improve the speed and safety of treatment.

PubMed Disclaimer

LinkOut - more resources