Circulating tumor DNA analysis in the era of precision oncology
- PMID: 32010431
- PMCID: PMC6968778
- DOI: 10.18632/oncotarget.27418
Circulating tumor DNA analysis in the era of precision oncology
Abstract
The spatial and temporal genomic heterogeneity of various tumor types and advances in technology have stimulated the development of circulating tumor DNA (ctDNA) genotyping. ctDNA was developed as a non-invasive, cost-effective alternative to tumor biopsy when such biopsy is associated with significant risk, when tumor tissue is insufficient or inaccessible, and/or when repeated assessment of tumor molecular abnormalities is needed to optimize treatment. The role of ctDNA is now well established in the clinical decision in certain alterations and tumors, such as the epidermal growth factor receptor (EGFR) mutation in non-small cell lung cancer and the v-Ki-ras2 kirsten rat sarcoma viral oncogene homolog (KRAS) mutation in colorectal cancer. The role of ctDNA analysis in other tumor types remains to be validated. Evolving data indicate the association of ctDNA level with tumor burden, and the usefulness of ctDNA analysis in assessing minimal residual disease, in understanding mechanisms of resistance to treatment, and in dynamically guiding therapy. ctDNA analysis is increasingly used to select therapy. Carefully designed clinical trials that use ctDNA analysis will increase the rate of patients who receive targeted therapy, will elucidate our understanding of evolution of tumor biology and will accelerate drug development and implementation of precision medicine. In this article we provide a critical overview of clinical trials and evolving data of ctDNA analysis in specific tumors and across tumor types.
Keywords: circulating tumor DNA analysis; clinical trials; genomic profiling; targeted therapy.
Conflict of interest statement
CONFLICTS OF INTEREST Dr. Rabih Said: has no financial relationship to disclose. Dr. Nicolas Guibert has the following financial relationships to disclose: Consulting fees from Astra Zeneca, Roche, Bristol-Myers-Squibb, and MSD Pharmaceuticals. Dr. Geoffrey Oxnard has the following financial relationships to disclose: Consulting fees from Astra Zeneca, DropWorks, GRAIL, Inivata, Jannsen, Loxo, Sysmex, and Ilumina, and Honoraria from Foundation Medicine, and Guardant. Dr. Apostolia-Maria Tsimberidou has the following financial relationships to disclose: Research Funding (Institution): Immatics, Parker Institute for Cancer Immunotherapy, Tempus, OBI Pharma, EMD Serono, Baxalta, ONYX, Bayer, Boston Biomedical, Placon Therapeutics, and Karus Therapeutics, Tvardi. Consulting or Advisory Role: Roche, Covance, and Genentech.
Figures
References
-
- Oxnard GR, Thress KS, Alden RS, Lawrance R, Paweletz CP, Cantarini M, Yang JC, Barrett JC, Janne PA. Association Between Plasma Genotyping and Outcomes of Treatment With Osimertinib (AZD9291) in Advanced Non-Small-Cell Lung Cancer. J Clin Oncol. 2016; 34:3375–3382. 10.1200/JCO.2016.66.7162. - DOI - PMC - PubMed
-
- Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E, Rolet F, Gillet B, Gongora C, Dechelotte P, Robert B, Del Rio M, Lamy PJ, Bibeau F, et al.. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med. 2014; 20:430–435. 10.1038/nm.3511. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
