Fluorescent Sensor Arrays Can Predict and Quantify the Composition of Multicomponent Bacterial Samples
- PMID: 32010667
- PMCID: PMC6974461
- DOI: 10.3389/fchem.2019.00916
Fluorescent Sensor Arrays Can Predict and Quantify the Composition of Multicomponent Bacterial Samples
Abstract
Fast and reliable identification of infectious disease agents is among the most important challenges for the healthcare system. The discrimination of individual components of mixed infections represents a particularly difficult task. In the current study we further expand the functionality of a ratiometric sensor array technology based on small-molecule environmentally-sensitive organic dyes, which can be successfully applied for the analysis of mixed bacterial samples. Using pattern recognition methods and data from pure bacterial species, we demonstrate that this approach can be used to quantify the composition of mixtures, as well as to predict their components with the accuracy of ~80% without the need to acquire additional reference data. The described approach significantly expands the functionality of sensor arrays and provides important insights into data processing for the analysis of other complex samples.
Keywords: 3-hydroxyflavone; ESIPT; discriminant analysis; machine learning; multiparametric sensing; pathogenic bacteria; pattern analysis.
Copyright © 2020 Svechkarev, Sadykov, Houser, Bayles and Mohs.
Figures




Similar articles
-
Fast and accurate identification of pathogenic bacteria using excitation-emission spectroscopy and machine learning.Sens Diagn. 2024 Jul 2;3(8):1253-1262. doi: 10.1039/d4sd00070f. eCollection 2024 Aug 8. Sens Diagn. 2024. PMID: 39129861 Free PMC article.
-
Ratiometric Fluorescent Sensor Array as a Versatile Tool for Bacterial Pathogen Identification and Analysis.ACS Sens. 2018 Mar 23;3(3):700-708. doi: 10.1021/acssensors.8b00025. Epub 2018 Mar 9. ACS Sens. 2018. PMID: 29504753 Free PMC article.
-
Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures.Langmuir. 2007 Dec 18;23(26):13232-41. doi: 10.1021/la7026708. Epub 2007 Nov 15. Langmuir. 2007. PMID: 18001074
-
The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays.Chem Rev. 2019 Jan 9;119(1):231-292. doi: 10.1021/acs.chemrev.8b00226. Epub 2018 Sep 12. Chem Rev. 2019. PMID: 30207700 Review.
-
Protein recognition by a pattern-generating fluorescent molecular probe.Nat Nanotechnol. 2017 Dec;12(12):1161-1168. doi: 10.1038/nnano.2017.175. Epub 2017 Oct 16. Nat Nanotechnol. 2017. PMID: 29035400 Review.
Cited by
-
Machine learning assisted identification of antibiotic-resistant Staphylococcus aureus strains using a paper-based ratiometric sensor array.Microchem J. 2024 Nov;206:111395. doi: 10.1016/j.microc.2024.111395. Epub 2024 Aug 12. Microchem J. 2024. PMID: 40735056 Free PMC article.
-
Fast and accurate identification of pathogenic bacteria using excitation-emission spectroscopy and machine learning.Sens Diagn. 2024 Jul 2;3(8):1253-1262. doi: 10.1039/d4sd00070f. eCollection 2024 Aug 8. Sens Diagn. 2024. PMID: 39129861 Free PMC article.
-
Polymer-based chemical-nose systems for optical-pattern recognition of gut microbiota.Chem Sci. 2022 Apr 26;13(20):5830-5837. doi: 10.1039/d2sc00510g. eCollection 2022 May 25. Chem Sci. 2022. PMID: 35685788 Free PMC article.
-
Simpler Procedure and Improved Performance for Pathogenic Bacteria Analysis with a Paper-Based Ratiometric Fluorescent Sensor Array.Anal Chem. 2022 Feb 8;94(5):2615-2624. doi: 10.1021/acs.analchem.1c05021. Epub 2022 Jan 24. Anal Chem. 2022. PMID: 35073053 Free PMC article.
References
-
- De Rosa R., Grosso S., Lorenzi G., Bruschetta G., Camporese A. (2018). Evaluation of the new Sysmex UF-5000 fluorescence flow cytometry analyser for ruling out bacterial urinary tract infection and for prediction of gram negative bacteria in urine cultures. Clin. Chim. Acta 484, 171–178. 10.1016/j.cca.2018.05.047 - DOI - PubMed
-
- Demšar J., Curk T., Erjavec A., Gorup C., Hočevar T., Milutinovič M., et al. (2013). Orange: data mining toolbox in Python. J. Mach. Learn. Res. 14, 2349–2353.
Grants and funding
LinkOut - more resources
Full Text Sources