Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan 29;12(2):356.
doi: 10.3390/nu12020356.

Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease

Affiliations
Review

Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease

Aleksandra Czumaj et al. Nutrients. .

Abstract

Polyunsaturated fatty acids (PUFAs) are considered one of the most important components of cells that influence normal development and function of many organisms, both eukaryotes and prokaryotes. Unsaturated fatty acid desaturases play a crucial role in the synthesis of PUFAs, inserting additional unsaturated bonds into the acyl chain. The level of expression and activity of different types of desaturases determines profiles of PUFAs. It is well recognized that qualitative and quantitative changes in the PUFA profile, resulting from alterations in the expression and activity of fatty acid desaturases, are associated with many pathological conditions. Understanding of underlying mechanisms of fatty acid desaturase activity and their functional modification will facilitate the development of novel therapeutic strategies in diseases associated with qualitative and quantitative disorders of PUFA.

Keywords: FADS; desaturation; disease; fatty acid desaturase; polyunsaturated fatty acid.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the writing of the manuscript.

Figures

Figure 1
Figure 1
Desaturase-mediated synthesis of polyunsaturated fatty acids (PUFAs). ALA—alpha-linolenic acid, 18:3 n-3, ARA—arachidonic acid, 20:4 n-6, DGLA—dihomo-gamma-linolenic acid, 20:3 n-6, DHA—docosahexaenoic acid, 22:6 n-3, DPA—docosapentaenoic acid, 22:5 n-3, D4D—delta-4 desaturase, D5D—delta-5 desaturase, D6D—delta-6 desaturase, D8D—delta-8 desaturase, D12D—delta-12 desaturase, D15D—delta-15 desaturase, EDA—eicosadienoic acid, 20:2 n-6, ETA—eicosatetraenoic acid, 20:4 n-3, ETE—eicosatrienoic acid, 20:3 n-3, EPA—eicosapentaenoic acid, 20:5 n-3, GLA—gamma-linolenic acid, 18:3 n-6, LA—linoleic acid, 18:2 n-6, OA—oleic acid, 18:1 n-9, SCD—stearoyl-CoA desaturase (delta-9 desaturase), SDA—stearidonic acid, 18:4 n-3.

Similar articles

Cited by

References

    1. Das U.N. Biological significance of essential fatty acids. J. Assoc. Physicians India. 2006;54:309–319. - PubMed
    1. Calder P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015;39:18S–32S. doi: 10.1177/0148607115595980. - DOI - PubMed
    1. Zárate R., El Jaber-Vazdekis N., Tejera N., Pérez J.A., Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017;6:25. doi: 10.1186/s40169-017-0153-6. - DOI - PMC - PubMed
    1. Nagy K., Tiuca I.-D. Fatty Acids. InTech; London, UK: 2017. Importance of Fatty Acids in Physiopathology of Human Body.
    1. Massey K.A., Nicolaou A. Lipidomics of polyunsaturated-fatty-acid-derived oxygenated metabolites. Biochem. Soc. Trans. 2011;39:1240–1246. doi: 10.1042/BST0391240. - DOI - PubMed

MeSH terms

Substances

LinkOut - more resources