Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 16;59(6):3387-3393.
doi: 10.1021/acs.inorgchem.9b03415. Epub 2020 Feb 4.

Tunable Perovskite-Derived Bismuth Halides: Cs3Bi2(Cl1- xIx)9

Free article

Tunable Perovskite-Derived Bismuth Halides: Cs3Bi2(Cl1- xIx)9

Emily E Morgan et al. Inorg Chem. .
Free article

Abstract

Bismuth-based perovskites are of interest as safer alternatives to lead-based optoelectronic materials. Prior studies have reported on the compounds Cs3Bi2Cl9, Cs3Bi2I9, and Cs3Bi2Cl3I6. Here we examine a range of compounds of the formula Cs3Bi2(Cl1-xIx)9, where x takes values from 0.09 to 0.52. Powder and single-crystal X-ray diffraction were used to determine that all of these compounds adopt the layered vacancy-ordered perovskite structure observed for Cs3Bi2Cl3I6, which is also the high-temperature phase of Cs3Bi2Cl9. We find that, even with very small iodine incorporation, the structure is switched to that of Cs3Bi2Cl3I6, with I atoms displaying a distinct preference for the capping sites on the BiX6 octahedra. Optical absorption spectroscopy was employed to study the evolution of optical properties of these materials, and this is complemented by density functional theory electronic structure calculations. Three main absorption features were observed for these compounds, and with increasing x, the lowest-energy features are red-shifted.

PubMed Disclaimer