Simulating ventricular systolic motion in a four-chamber heart model with spatially varying robin boundary conditions to model the effect of the pericardium
- PMID: 32014305
- PMCID: PMC7677892
- DOI: 10.1016/j.jbiomech.2020.109645
Simulating ventricular systolic motion in a four-chamber heart model with spatially varying robin boundary conditions to model the effect of the pericardium
Abstract
The pericardium affects cardiac motion by limiting epicardial displacement normal to the surface. In computational studies, it is important for the model to replicate realistic motion, as this affects the physiological fidelity of the model. Previous computational studies showed that accounting for the effect of the pericardium allows for a more realistic motion simulation. In this study, we describe the mechanism through which the pericardium causes improved cardiac motion. We simulated electrical activation and contraction of the ventricles on a four-chamber heart in the presence and absence of the effect of the pericardium. We simulated the mechanical constraints imposed by the pericardium by applying normal Robin boundary conditions on the ventricular epicardium. We defined a regional scaling of normal springs stiffness based on image-derived motion from CT images. The presence of the pericardium reduced the error between simulated and image-derived end-systolic configurations from 12.8±4.1 mm to 5.7±2.5 mm. First, the pericardium prevents the ventricles from spherising during isovolumic contraction, reducing the outward motion of the free walls normal to the surface and the upwards motion of the apex. Second, by restricting the inward motion of the free and apical walls of the ventricles the pericardium increases atrioventricular plane displacement by four folds during ejection. Our results provide a mechanistic explanation of the importance of the pericardium in physiological simulations of electromechanical cardiac function.
Keywords: Apico-basal shortening; Cardiac electromechanics; Computer models; Heart failure; Pericardium; Ventricular systolic motion.
Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors have no conflict of interests.
Figures




Similar articles
-
The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling.Biomech Model Mechanobiol. 2019 Apr;18(2):503-529. doi: 10.1007/s10237-018-1098-4. Epub 2018 Dec 10. Biomech Model Mechanobiol. 2019. PMID: 30535650
-
Simulation of the contraction of the ventricles in a human heart model including atria and pericardium.Biomech Model Mechanobiol. 2014 Jun;13(3):627-41. doi: 10.1007/s10237-013-0523-y. Epub 2013 Aug 29. Biomech Model Mechanobiol. 2014. PMID: 23990017
-
Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.Phys Med Biol. 2005 Apr 21;50(8):1901-17. doi: 10.1088/0031-9155/50/8/018. Epub 2005 Apr 6. Phys Med Biol. 2005. PMID: 15815103
-
A new look at diastole.Heart Fail Clin. 2008 Jul;4(3):347-60. doi: 10.1016/j.hfc.2008.02.013. Heart Fail Clin. 2008. PMID: 18598986 Review.
-
[Diastolic function of the left heart ventricle].Ter Arkh. 1989;61(9):153-7. Ter Arkh. 1989. PMID: 2688160 Review. Russian. No abstract available.
Cited by
-
Inversion of Left Ventricular Axial Shortening: In Silico Proof of Concept for Treatment of HFpEF.Bioengineering (Basel). 2024 Jul 2;11(7):676. doi: 10.3390/bioengineering11070676. Bioengineering (Basel). 2024. PMID: 39061758 Free PMC article.
-
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28. Physiol Rev. 2024. PMID: 38153307 Free PMC article. Review.
-
Personalization of biomechanical simulations of the left ventricle by in-vivo cardiac DTI data: Impact of fiber interpolation methods.Front Physiol. 2022 Nov 28;13:1042537. doi: 10.3389/fphys.2022.1042537. eCollection 2022. Front Physiol. 2022. PMID: 36518106 Free PMC article.
-
The Impact of Standard Ablation Strategies for Atrial Fibrillation on Cardiovascular Performance in a Four-Chamber Heart Model.Cardiovasc Eng Technol. 2023 Apr;14(2):296-314. doi: 10.1007/s13239-022-00651-1. Epub 2023 Jan 18. Cardiovasc Eng Technol. 2023. PMID: 36652165 Free PMC article.
-
Probabilistic Richardson extrapolation.J R Stat Soc Series B Stat Methodol. 2024 Dec 26;87(2):457-479. doi: 10.1093/jrsssb/qkae098. eCollection 2025 Apr. J R Stat Soc Series B Stat Methodol. 2024. PMID: 40225198 Free PMC article.
References
-
- Abbasi A.S., Eber L.M., Macalpin R.N., Kattus A.A. Paradoxical motion of interventricular septum in left bundle branch block. Circulation. 1974;49:423–427. - PubMed
-
- Augustin C.M., Neic A., Liebmann M., Prassl A.J., Niederer S.A., Haase G., Plank G. Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J. Comput. Phys. 2016;305:622–646. - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous