Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 15:390:121782.
doi: 10.1016/j.jhazmat.2019.121782. Epub 2019 Dec 6.

Elevated salinity deteriorated enhanced biological phosphorus removal in an aerobic granular sludge sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal

Affiliations

Elevated salinity deteriorated enhanced biological phosphorus removal in an aerobic granular sludge sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal

Qiulai He et al. J Hazard Mater. .

Abstract

Hypersaline wastewater may pose threats to biological wastewater treatment processes. An aerobic granular sludge-based sequencing batch reactor (SBR) performing simultaneous nitrification, denitrification and phosphorus removal (SNDPR) was evaluated with increased salinity from 1 to 2 % (w/v). Nitrogen removal performance was unaffected by salinity up to 20 g/L in terms of reliable and efficient nitrification and denitrification. Enhanced biological phosphorus removal (EBPR) process was completely deteriorated at salinity up to 2 %, in contrast to excellent phosphorus removal at 1 %. Profiles of phosphorus over one cycle demonstrated that higher salinity not only inhibited anaerobic phosphorus release but also impeded aerobic/anoxic phosphorus uptake. Illumina MiSeq sequencing revealed multiple halophilic and non-halophilic bacteria within aerobic granules with family Anaerolineaceae being the predominant potential salt adapter. Besides, ammonia oxidizing bacteria (AOB), glycogen accumulating organisms (GAOs) were more tolerant to salt than nitrite oxidizing bacteria (NOB) and phosphorus accumulating organisms (PAOs) and denitrifying PAOs (DNPAOs). These results deciphered the resilience of aerobic granular sludge-based biological nitrogen and phosphorus removal processes to hypersaline stress.

Keywords: Aerobic granular sludge; NOB; PAOs; Salinity; Simultaneous nitrification, denitrification and phosphorus removal.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources