Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May:260:114046.
doi: 10.1016/j.envpol.2020.114046. Epub 2020 Jan 25.

Interaction mechanism of dissolved Cr(VI) and manganite in the presence of goethite coating

Affiliations

Interaction mechanism of dissolved Cr(VI) and manganite in the presence of goethite coating

Yao Luo et al. Environ Pollut. 2020 May.

Abstract

Hexavalent chromium has aroused a series of environmental concerns due to its high mobility and toxicity. Iron and manganese oxides usually coexist in the environments and influence the speciation and geochemical cycling of chromium. However, the interaction mechanism of iron-manganese oxides with dissolved Cr(VI) remains largely unknown. In this work, the interaction processes of dissolved Cr(VI) and manganite in the presence of goethite coating were investigated, and the effects of pH (2.0-9.0) and iron oxide content were also studied. Manganite-goethite composites were formed with uniform micromorphologies in the system of manganite and Fe(II). In the reaction system of single manganite and Cr(VI), manganite could only adsorb but not reduce Cr(VI), with the adsorption amount decreasing at higher pHs. In the reaction system of manganite-goethite composites and Cr(VI), adsorbed Cr(VI) was reduced to Cr(III) by Fe(II) on composites surface. The generated Cr(III) was then retained as Cr(OH)3 on the mineral surface. Goethite coating suppressed the re-oxidation of newly formed Cr(III) by manganite. The amounts of adsorbed Cr(VI) and generated Cr(III) increased with increasing iron oxide content, and increased first and then decreased with increasing pH. The Cr(III) formation and Cr(VI) adsorption amount reached the maximum at pH 5.0-6.0. The present work highlights the transformation and retention of Cr(VI) by iron-manganese oxides and provides potential implications for the use of such oxides in the remediation of Cr(VI) polluted waters and soils.

Keywords: Adsorption; Composite; Cr(VI); Goethite; Manganite.

PubMed Disclaimer

Similar articles

LinkOut - more resources