Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 3;10(1):1671.
doi: 10.1038/s41598-020-58060-0.

Emergence of life in an inflationary universe

Affiliations

Emergence of life in an inflationary universe

Tomonori Totani. Sci Rep. .

Abstract

Abiotic emergence of ordered information stored in the form of RNA is an important unresolved problem concerning the origin of life. A polymer longer than 40-100 nucleotides is necessary to expect a self-replicating activity, but the formation of such a long polymer having a correct nucleotide sequence by random reactions seems statistically unlikely. However, our universe, created by a single inflation event, likely includes more than 10100 Sun-like stars. If life can emerge at least once in such a large volume, it is not in contradiction with our observations of life on Earth, even if the expected number of abiogenesis events is negligibly small within the observable universe that contains only 1022 stars. Here, a quantitative relation is derived between the minimum RNA length lmin required to be the first biological polymer, and the universe size necessary to expect the formation of such a long and active RNA by randomly adding monomers. It is then shown that an active RNA can indeed be produced somewhere in an inflationary universe, giving a solution to the abiotic polymerization problem. On the other hand, lmin must be shorter than ~20 nucleotides for the abiogenesis probability close to unity on a terrestrial planet, but a self-replicating activity is not expected for such a short RNA. Therefore, if extraterrestrial organisms of a different origin from those on Earth are discovered in the future, it would imply an unknown mechanism at work to polymerize nucleotides much faster than random statistical processes.

PubMed Disclaimer

Conflict of interest statement

The author declares no competing interests.

Figures

Figure 1
Figure 1
Logarithm of the number of stars necessary to expect at least one abiogenesis event (lgN*) versus the minimum RNA length required to show a biological activity leading to abiogenesis (lmin). The difference between the top and bottom panels is just the scale of the vertical axis. Some important values of lgN* are indicated by horizontal dotted lines; "inflation ×2” means the universe size when the inflation lasted twice as long as that required to make the observable universe homogeneous. The red solid curve is the relation using the baseline model parameter values, and other curves are when some of the model parameters are changed from the baseline values, as indicated in the figure.

Similar articles

Cited by

References

    1. Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 2014;114:285–366. doi: 10.1021/cr2004844. - DOI - PubMed
    1. Lanier KA, Williams LD. The Origin of Life: Models and Data. J. Mol. Evol. 2017;84:85–92. doi: 10.1007/s00239-017-9783-y. - DOI - PMC - PubMed
    1. Szostak JW. The Narrow Road to the Deep Past: In Search of the Chemistry of the Origin of Life. Angew. Chem. Int. Ed. Engl. 2017;56:11037–11043. doi: 10.1002/anie.201704048. - DOI - PubMed
    1. Kitadai Norio, Maruyama Shigenori. Origins of building blocks of life: A review. Geoscience Frontiers. 2018;9(4):1117–1153. doi: 10.1016/j.gsf.2017.07.007. - DOI
    1. Yamagishi, A., Kakegawa, T. & Usui, T. (eds.) Astrobiology: From the Origins of Life to the Search for Extraterrestrial Intelligence (Springer, 2019).

Publication types