Physical Activity and Brain Plasticity
- PMID: 32018342
- PMCID: PMC7004567
- DOI: 10.20463/jenb.2019.0027
Physical Activity and Brain Plasticity
Abstract
Recent research suggests that the brain has capable of remarkable plasticity and physical activity can enhance it. In this editorial letter, we summarize the role of hippocampal plasticity in brain functions. Furthermore, we briefly sketched the factors and mechanisms of motion that influence brain plasticity. We conclude that physical activity can be an encouraging intervention for brain restoration through neuronal plasticity. At the same time, we suggest that a mechanistic understanding of the beneficial effects of exercise should be accompanied in future studies.
Keywords: Physical activity.
References
-
- van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25:8680–5. doi: 10.1523/JNEUROSCI.1731-05.2005. [van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25:8680-5.] - DOI - PMC - PubMed
-
- Moon HY, Kim SH, Yang YR, Song P, Yu HS, Park HG, Hwang O, Lee-Kwon W, Seo JK, Hwang D, Choi JH, Bucala R, Ryu SH, Kim YS, Suh PG. Macrophage migration inhibitory factor mediates the antidepressant actions of voluntary exercise. Proc Natl Acad Sci U S A. 2012;109:13094–9. doi: 10.1073/pnas.1205535109. [Moon HY, Kim SH, Yang YR, Song P, Yu HS, Park HG, Hwang O, Lee-Kwon W, Seo JK, Hwang D, Choi JH, Bucala R, Ryu SH, Kim YS, Suh PG. Macrophage migration inhibitory factor mediates the antidepressant actions of voluntary exercise. Proc Natl Acad Sci U S A. 2012;109:13094-9.] - DOI - PMC - PubMed
-
- Vivar C, Potter MC, van Praag H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci. 2013;15:189–210. doi: 10.1007/7854_2012_220. [Vivar C, Potter MC, van Praag H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci. 2013;15:189-210.] - DOI - PMC - PubMed
-
- Chang H, Kim K, Jung YJ, Kato M. Effects of acute high-Intensity resistance exercise on cognitive function and oxygenation in prefrontal cortex. J Exerc Nutrition Biochem. 2017;21:1–8. doi: 10.20463/jenb.2017.0012. [Chang H, Kim K, Jung YJ, Kato M. Effects of acute high-Intensity resistance exercise on cognitive function and oxygenation in prefrontal cortex. J Exerc Nutrition Biochem. 2017;21:1-8.] - DOI - PMC - PubMed
-
- Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E, van Praag H. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function. Cell Metab. 2016;24:332–40. doi: 10.1016/j.cmet.2016.05.025. [Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E, van Praag H. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function. Cell Metab. 2016;24:332-40.] - DOI - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources
