Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 20:714:136827.
doi: 10.1016/j.scitotenv.2020.136827. Epub 2020 Jan 22.

Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability

Affiliations

Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability

Wen-Li Tang et al. Sci Total Environ. .

Abstract

Methylmercury (MeHg) is a neurotoxin, mainly derived from microbial mercury methylation in natural aquatic environments, and poses threats to human health. Polar regions and paddy soils are potential hotspots of mercury methylation and represent environmental settings that are susceptible to natural and anthropogenic perturbations. The effects of changing environmental conditions on the methylating microorganisms and mercury speciation due to global climate change and farming practices aimed for sustainable agriculture were discussed for polar regions and paddy soils, respectively. To better understand and predict microbial mercury methylation in the changing environment, we synthesized current understanding of how to effectively identify active mercury methylators and assess the bioavailability of different mercury species for methylation. The application of biomarkers based on the hgcAB genes have demonstrated the occurrence of potential mercury methylators, such as sulfate-reducing bacteria, iron-reducing bacteria, methanogen and syntrophs, in a diverse variety of microbial habitats. Advanced techniques, such as enriched stable isotope tracers, whole-cell biosensor and diffusive gradient thin film (DGT) have shown great promises in quantitatively assessing mercury availability to microbial methylators. Improved understanding of the complex structure of microbial communities consisting mercury methylators and non-methylators, chemical speciation of inorganic mercury under geochemically relevant conditions, and the pathway of cellular mercury uptake will undoubtedly facilitate accurate assessment and prediction of in situ microbial mercury methylation.

Keywords: Mercury bioavailability; Mercury methylation; Methylmercury; Microbial methylators.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources