High-Efficiency Small Sample Microparticle Fractionation on a Femtosecond Laser-Machined Microfluidic Disc
- PMID: 32019235
- PMCID: PMC7074639
- DOI: 10.3390/mi11020151
High-Efficiency Small Sample Microparticle Fractionation on a Femtosecond Laser-Machined Microfluidic Disc
Abstract
The fabrication and testing of microfluidic spinning compact discs with embedded trapezoidal microchambers for the purpose of inertial microparticle focusing is reported in this article. Microparticle focusing channels require small features that cannot be easily fabricated in acrylic sheets and are complicated to realize in glass by traditional lithography techniques; therefore, the fabrication of microfluidic discs with femtosecond laser ablation is reported for the first time in this paper. It could be demonstrated that high-efficiency inertial focusing of 5 and 10 µm particles is achieved in a channel with trapezoidal microchambers regardless of the direction of disc rotation, which correlates to the dominance of inertial forces over Coriolis forces. To achieve the highest throughput possible, the suspension concentration was increased from 0.001% (w/v) to 0.005% (w/v). The focusing efficiency was 98.7% for the 10 µm particles and 93.75% for the 5 µm particles.
Keywords: femtosecond laser; microfluidic disc; microfluidics; microparticle separation.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Enhanced inertial focusing of microparticles and cells by integrating trapezoidal microchambers in spiral microfluidic channels.RSC Adv. 2019 Jun 18;9(33):19197-19204. doi: 10.1039/c9ra03587g. eCollection 2019 Jun 14. RSC Adv. 2019. PMID: 35516901 Free PMC article.
-
Spiral Microchannels with Trapezoidal Cross Section Fabricated by Femtosecond Laser Ablation in Glass for the Inertial Separation of Microparticles.Micromachines (Basel). 2018 Apr 9;9(4):171. doi: 10.3390/mi9040171. Micromachines (Basel). 2018. PMID: 30424104 Free PMC article.
-
Sheath-less high throughput inertial separation of small microparticles in spiral microchannels with trapezoidal cross-section.RSC Adv. 2019 Dec 18;9(71):41970-41976. doi: 10.1039/c9ra05916d. eCollection 2019 Dec 13. RSC Adv. 2019. PMID: 35541623 Free PMC article.
-
A review on inertial microfluidic fabrication methods.Biomicrofluidics. 2023 Oct 19;17(5):051504. doi: 10.1063/5.0163970. eCollection 2023 Sep. Biomicrofluidics. 2023. PMID: 37869745 Free PMC article. Review.
-
Recent progress of inertial microfluidic-based cell separation.Analyst. 2021 Nov 22;146(23):7070-7086. doi: 10.1039/d1an01160j. Analyst. 2021. PMID: 34761757 Review.
Cited by
-
Recent Advances in Microfluidics-Based Monitoring of Waterborne Pathogens: From Isolation to Detection.Micromachines (Basel). 2025 Apr 14;16(4):462. doi: 10.3390/mi16040462. Micromachines (Basel). 2025. PMID: 40283337 Free PMC article. Review.
-
Numerical Study of a Centrifugal Platform for the Inertial Separation of Circulating Tumor Cells Using Contraction-Expansion Array Microchannels.Arch Razi Inst. 2022 Apr 30;77(2):647-660. doi: 10.22092/ARI.2022.357477.2046. eCollection 2022 Apr. Arch Razi Inst. 2022. PMID: 36284940 Free PMC article.
-
Editorial for the Special Issue on Inertial Microfluidics.Micromachines (Basel). 2021 May 21;12(6):587. doi: 10.3390/mi12060587. Micromachines (Basel). 2021. PMID: 34063750 Free PMC article.
-
Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review.Sensors (Basel). 2023 Jun 2;23(11):5300. doi: 10.3390/s23115300. Sensors (Basel). 2023. PMID: 37300027 Free PMC article. Review.
References
-
- Krull R., Wucherpfennig T., Esfandabadi M.E., Walisko R., Melzer G., Hempel D.C., Kampen I., Kwade A., Wittmann C. Characterization and control of fungal morphology for improved production performance in biotechnology. J. Biotechnol. 2013;163:112–123. doi: 10.1016/j.jbiotec.2012.06.024. - DOI - PubMed
-
- Khoo B.L., Warkiani M.E., Tan D.S.-W., Bhagat A.A.S., Irwin D., Lau D.P., Lim A.S.T., Lim K.H., Krisna S.S., Lim W.-T., et al. Clinical Validation of an Ultra High-Throughput Spiral Microfluidics for the Detection and Enrichment of Viable Circulating Tumor Cells. PLoS ONE. 2014;9:e99409. doi: 10.1371/journal.pone.0099409. - DOI - PMC - PubMed
-
- Al-Faqheri W., Thio T.H.G., Qasaimeh M.A., Dietzel A., Madou M., Al-Halhouli A. Particle/cell separation on microfluidic platforms based on centrifugation effect: a review. Microfluid. Nanofluid. 2017;21:1–23. doi: 10.1007/s10404-017-1933-4. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
