Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 11;70(2):10.1093/pasj/psx083.
doi: 10.1093/pasj/psx083.

Hitomi X-ray studies of Giant Radio Pulses from the Crab pulsar

Hitomi CollaborationFelix Aharonian  1 Hiroki Akamatsu  2 Fumie Akimoto  3 Steven W Allen  4   5   6 Lorella Angelini  7 Marc Audard  8 Hisamitsu Awaki  9 Magnus Axelsson  10 Aya Bamba  11   12 Marshall W Bautz  13 Roger Blandford  4   5   6 Laura W Brenneman  14 Gregory V Brown  15 Esra Bulbul  13 Edward M Cackett  16 Maria Chernyakova  1 Meng P Chiao  7 Paolo S Coppi  17   18 Elisa Costantini  2 Jelle De Plaa  2 Cor P De Vries  2 Jan-Willem Den Herder  2 Chris Done  19 Tadayasu Dotani  20 Ken Ebisawa  20 Megan E Eckart  7 Teruaki Enoto  21   22 Yuichiro Ezoe  23 Andrew C Fabian  24 Carlo Ferrigno  8 Adam R Foster  14 Ryuichi Fujimoto  25 Yasushi Fukazawa  26 Akihiro Furuzawa  27 Massimiliano Galeazzi  28 Luigi C Gallo  29 Poshak Gandhi  30 Margherita Giustini  2 Andrea Goldwurm  31   32 Liyi Gu  2 Matteo Guainazzi  33 Yoshito Haba  34 Kouichi Hagino  20 Kenji Hamaguchi  7   35 Ilana M Harrus  7   35 Isamu Hatsukade  36 Katsuhiro Hayashi  20 Takayuki Hayashi  37 Kiyoshi Hayashida  38 Junko S Hiraga  39 Ann Hornschemeier  7 Akio Hoshino  40 John P Hughes  41 Yuto Ichinohe  23 Ryo Iizuka  20 Hajime Inoue  42 Yoshiyuki Inoue  20 Manabu Ishida  20 Kumi Ishikawa  20 Yoshitaka Ishisaki  23 Masachika Iwai  20 Jelle Kaastra  2   43 Tim Kallman  7 Tsuneyoshi Kamae  11 Jun Kataoka  44 Satoru Katsuda  45 Nobuyuki Kawai  46 Richard L Kelley  7 Caroline A Kilbourne  7 Takao Kitaguchi  26 Shunji Kitamoto  40 Tetsu Kitayama  47 Takayoshi Kohmura  48 Motohide Kokubun  20 Katsuji Koyama  49 Shu Koyama  20 Peter Kretschmar  50 Hans A Krimm  51   52 Aya Kubota  53 Hideyo Kunieda  37 Philippe Laurent  31   32 Shiu-Hang Lee  21 Maurice A Leutenegger  7 Olivier O Limousin  32 Michael Loewenstein  7 Knox S Long  54 David Lumb  33 Greg Madejski  4 Yoshitomo Maeda  20 Daniel Maier  31   32 Kazuo Makishima  55 Maxim Markevitch  7 Hironori Matsumoto  38 Kyoko Matsushita  56 Dan Mccammon  57 Brian R Mcnamara  58 Missagh Mehdipour  2 Eric D Miller  13 Jon M Miller  59 Shin Mineshige  21 Kazuhisa Mitsuda  20 Ikuyuki Mitsuishi  37 Takuya Miyazawa  60 Tsunefumi Mizuno  26 Hideyuki Mori  7 Koji Mori  36 Koji Mukai  7   35 Hiroshi Murakami  61 Richard F Mushotzky  62 Takao Nakagawa  20 Hiroshi Nakajima  38 Takeshi Nakamori  63 Shinya Nakashima  55 Kazuhiro Nakazawa  11 Kumiko K Nobukawa  64 Masayoshi Nobukawa  65 Hirofumi Noda  66   67 Hirokazu Odaka  6 Takaya Ohashi  23 Masanori Ohno  26 Takashi Okajima  7 Kenya Oshimizu  68 Naomi Ota  64 Masanobu Ozaki  20 Frits Paerels  69 Stéphane Paltani  8 Robert Petre  7 Ciro Pinto  24 Frederick S Porter  7 Katja Pottschmidt  7   35 Christopher S Reynolds  62 Samar Safi-Harb  70 Shinya Saito  40 Kazuhiro Sakai  7 Toru Sasaki  56 Goro Sato  20 Kosuke Sato  56 Rie Sato  20 Makoto Sawada  71 Norbert Schartel  50 Peter J Serlemtsos  7 Hiromi Seta  23 Megumi Shidatsu  55 Aurora Simionescu  20 Randall K Smith  14 Yang Soong  7 Łukasz Stawarz  72 Yasuharu Sugawara  20 Satoshi Sugita  46 Andrew Szymkowiak  17 Hiroyasu Tajima  3 Hiromitsu Takahashi  26 Tadayuki Takahashi  20 Shiníchiro Takeda  60 Yoh Takei  20 Toru Tamagawa  55 Takayuki Tamura  20 Takaaki Tanaka  49 Yasuo Tanaka  73 Yasuyuki T Tanaka  26 Makoto S Tashiro  68 Yuzuru Tawara  37 Yukikatsu Terada  68 Yuichi Terashima  9 Francesco Tombesi  7   62 Hiroshi Tomida  20 Yohko Tsuboi  45 Masahiro Tsujimoto  20 Hiroshi Tsunemi  38 Takeshi Go Tsuru  49 Hiroyuki Uchida  49 Hideki Uchiyama  74 Yasunobu Uchiyama  40 Shutaro Ueda  20 Yoshihiro Ueda  21 Shiníchiro Uno  75 C Megan Urry  17 Eugenio Ursino  28 Shin Watanabe  20 Norbert Werner  76   77   26 Dan R Wilkins  4 Brian J Williams  54 Shinya Yamada  23 Hiroya Yamaguchi  7 Kazutaka Yamaoka  3 Noriko Y Yamasaki  20 Makoto Yamauchi  36 Shigeo Yamauchi  64 Tahir Yaqoob  35 Yoichi Yatsu  46 Daisuke Yonetoku  25 Irina Zhuravleva  4   5 Abderahmen Zoghbi  59 Toshio Terasawa  55 Mamoru Sekido  78 Kazuhiro Takefuji  78 Eiji Kawai  78 Hiroaki Misawa  79 Fuminori Tsuchiya  79 Ryo Yamazaki  71 Eiji Kobayashi  71 Shota Kisaka  71 Takahiro Aoki  80
Affiliations

Hitomi X-ray studies of Giant Radio Pulses from the Crab pulsar

Hitomi Collaboration et al. Publ Astron Soc Jpn Nihon Tenmon Gakkai. .

Abstract

To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 - 300 keV band and the Kashima NICT radio observatory in the 1.4 - 1.7 GHz band with a net exposure of about 2 ks on 25 March 2016, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1,000 and 100 GRPs were simultaneously observed at the main and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main or inter-pulse phases. All variations are within the 2 sigma fluctuations of the X-ray fluxes at the pulse peaks, and the 3 sigma upper limits of variations of main- or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2 - 300 keV band. The values become 25% or 110% for main or inter-pulse GRPs, respectively, when the phase width is restricted into the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and the 70-300 keV are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of main- and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) ×10-11 erg cm-2, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere and the number of photon-emitting particles temporally increases. However, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a > 0.02% brightening of the pulse-peak flux under such conditions.

Keywords: Giant radio pulses; X-rays:stars; pulsar:individual:B0531+21; radio continuum:stars.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.
In the main panel GRP candidates (S/N>5.5) are shown in the (TDB, φ) plane, where two clusters in φ are of main pulse and interpulse GRPs (see text). Scatterd points show the remaining noise contribution. The threshold S/N=5.5 corresponds to the minimum pulse energy 2.2 kJy μs. The strongest main pulse occurred at 13:07:25.645TDB had the peak S/N~ 659. It spreaded over ~40μs interval having the total pulse energy 358 kJy μs.
Fig. 2.
Fig. 2.
Light curve of the Crab with from Hitomi SXS, HXI within region a, HXI within region b, and SGD-1, from top to bottom panels, respectively. The black croses represent the entire clened events of the Crab with Hitomi, and red shows the same but within the simultaneous intervals with radio observatories.
Fig. 3.
Fig. 3.
Comparison of Crab pulse profiles between the NORMAL and the GRP cycles, which were shown in blue and red, respectively, and the green croses in the each bottom panel show the difference between them. The left and right panels were the plots of the MP-GRPs and IP-GRPs, respectively, and from the top to the bottom, the data taken by the SXS, HXI, SGD-1, and combined data were plotted, respectively.
Fig. 4.
Fig. 4.
The top plots in each panel show the same pulse profiles of NORMAL and on/near GRP cycles represented by blue and red lines, respectively. The counts in off-phase (φ = 0.6 – 0.8) of the NORMAL cycles were subtracted from these pulse profiles. The bottom plots in each panel represent the ratio of the enhancement of near GRP data relative to the NORMAL cycles, which was shown in green. The data during the OFF phase were not plotted here. The statistical uncertainties of each phase bin at 1 and 2 sigma were shown in thick and thin black lines, respectively. The SXS, HXI, SGD-1, and combined data were shown from top to bottom panels, respectively.
Fig. 5.
Fig. 5.
The enhancement of inter or main pulses on the MP-GRP or IP-GRP were shown in the left and right plots, respectively. From the top to bottom panels, the SXS, HXI, SGD-1, and combined data were shown, respectively. The enhancements of GRP relative to normal cycles were measured at the corresponding pulse peaks (i.e., inter pulse of main pulse) with 0.0078, 0.0322, 0.0909, and 0.200 phase widths, which were shown from top to bottom in each plot. The enhancement, as a percentage, was shown in red, and statistical uncertainties of 1 and 2 sigma were shown in blue and green colors, respectively.
Fig. 6.
Fig. 6.
Left and right panels show the X-ray spectra during the main and inter pulses, respectively. The spectra with the SXS and the HXI are shown in black and red crosses, respectively. The best-fit power-law models are shown in red and black lines for the SXS and HXI, respectively. The bottom panels represent the ratio between the data and the model.
Fig. 7.
Fig. 7.
The enhancement of MP-GRPs of Crab pulsar in various energy bands obtained by the Hilliam Herschel Telescope (Shearer et al. 2003), Hale telescope (Strader et al. 2013), Chandra (Bilous et al. 2012), Suzaku (Mikami et al. 2014), Hitomi (this work), CGRO (Lundgren et al. 1995; Ramanamurthy & Thompson 1998), Fermi (Bilous et al. 2011), and VERITAS (Aliu et al. 2012) All the upper limits shown in arrows represent 3 σ values. The red and blue cases indicate the enhancement measured in a short-phase width (Δφ = 0.02 – 0.03 phase) and wider-phase width (Δφ > 0.1), respectively. Note that the thresholds of GRP detections in the radio band were different among them.

References

    1. Aliu E, Archambault S, Arlen T, et al. 2012, ApJ, 760, 136
    1. Bilous AV, Kondratiev VI, McLaughlin MA, et al. 2011, ApJ, 728, 110
    1. Bilous AV, McLaughlin MA, Kondratiev VI, & Ransom SM 2012, ApJ, 749, 24
    1. Bühler R & Blandford R 2014, Reports on Progress in Physics, 77, 066901. - PubMed
    1. Burke-Spolaor S, Johnston S, Bailes M, et al. 2012, MNRAS, 423, 1351