Squalene Synthase Deficiency
- PMID: 32027475
- Bookshelf ID: NBK553533
Squalene Synthase Deficiency
Excerpt
Clinical characteristics: Squalene synthase deficiency (SQSD) is a rare inborn error of cholesterol biosynthesis with multisystem clinical manifestations similar to Smith-Lemli-Optiz syndrome. Key clinical features include facial dysmorphism, a generalized seizure disorder presenting in the neonatal period, nonspecific structural brain malformations, cortical visual impairment, optic nerve hypoplasia, profound developmental delay / intellectual disability, dry skin with photosensitivity, and genital malformations in males.
Diagnosis/testing: Individuals with SQSD have a unique urine metabolic profile with increased saturated and unsaturated branched-chain dicarboxylic acids and glucuronides derived from farnesol. The diagnosis of squalene synthase deficiency is established in a proband with characteristic urine metabolites on urine organic acids analysis or by the identification of biallelic pathogenic variants in FDFT1 by molecular genetic testing.
Management: Treatment of manifestations: Currently there are no specific disease-modifying treatments. Standard treatment for epilepsy, congenital heart defects, constipation, cryptorchidism, hypospadias, spasticity, and developmental delay / intellectual disability is appropriate. Feeding therapy may be useful, although placement of a gastrostomy tube is recommended for those with dysphagia and/or poor growth. In those with visual impairment, early intervention may help to stimulate visual development. In those with sleep disturbance, a trial of melatonin may be considered.
Surveillance: At each visit: assess for new manifestations such as seizures, changes in tone, and movement disorder; monitor developmental progress, educational needs, and behavior; assess for evidence of aspiration or respiratory insufficiency; assess for evidence of sleep disorder; monitor growth, nutritional status, and signs and symptoms of constipation. Ophthalmology evaluation annually or as clinically indicated.
Agents/circumstances to avoid: Sun and UV light exposure; skin photosensitivity has produced clinically significant UV-related sunburns within ten minutes of direct sunlight exposure.
Genetic counseling: SQSD is inherited in an autosomal recessive manner. At conception, each sib of an affected individual has a 25% change of being affected, a 50% change of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the FDFT1 pathogenic variants in the family are known.
Copyright © 1993-2025, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.
Sections
References
-
- Besnard T, Sloboda N, Goldenberg A, Küry S, Cogné B, Breheret F, Trochu E, Conrad S, Vincent M, Deb W, Balguerie X, Barbarot S, Baujat G, Ben-Omran T, Bursztejn AC, Carmignac V, Datta AN, Delignières A, Faivre L, Gardie B, Guéant JL, Kuentz P, Lenglet M, Nassogne MC, Ramaekers V, Schnur RE, Si Y, Torti E, Thevenon J, Vabres P, Van Maldergem L, Wand D, Wiedemann A, Cariou B, Redon R, Lamazière A, Bézieau S, Feillet F, Isidor B. Biallelic pathogenic variants in the lanosterol synthase gene LSS involved in the cholesterol biosynthesis cause alopecia with intellectual disability, a rare recessive neuroectodermal syndrome. Genet Med. 2019;21:2025-35. - PubMed
-
- Coman D, Vissers LELM, Riley LG, Kwint MP, Hauck R, Koster J, Geuer S, Hopkins S, Hallinan B, Sweetman L, Engelke UFH, Burrow TA, Cardinal J, McGill J, Inwood A, Gurnsey C, Waterham HR, Christodoulou J, Wevers RA, Pitt J. Squalene synthase deficiency: clinical, biochemical, and molecular characterization of a defect in cholesterol biosynthesis. Am J Hum Genet. 2018;103:125-30. - PMC - PubMed
-
- Do R, Kiss RS, Gaudet D, Engert JC. Squalene synthase: a critical enzyme in the cholesterol biosynthesis pathway. Clin Genet. 2009;75:19–29. - PubMed
-
- Jemal M, Ouyang Z. Gas chromatography-mass spectrometric method for quantitative determination in human urine of dicarboxylic (dioic) acids produced in the body as a consequence of cholesterol biosynthesis inhibition. J Chromatogr B Biomed Sci Appl. 1998;709:233–41. - PubMed
Publication types
LinkOut - more resources
Full Text Sources