Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Mar 1;37(5):681-691.
doi: 10.1089/neu.2019.6938.

The Neuroprotective Role of Reactive Astrocytes after Central Nervous System Injury

Affiliations
Review

The Neuroprotective Role of Reactive Astrocytes after Central Nervous System Injury

Anthony George Boghdadi et al. J Neurotrauma. .

Abstract

Reactive astrocytes have traditionally been viewed as a significant contributor to secondary neuronal damage and repair inhibition after central nervous system (CNS) injury attributed, in large part, to their roles in glial scarring. However, more recent transcriptional evidence has uncovered the vast diversity in reactive astrocyte identity and functions that comprises both neuroprotective and -toxic characteristics. Additionally, the capacity of reactive astrocytes to shift between these activation states demonstrates a high level of environment-dependent plasticity that drives the interplay between neuroprotection and -toxicity after CNS injury. These recent findings have spawned a new field of research that seeks to identify and categorize the function of these discrete subpopulations in the context of neurotrauma, as well as identify their regulators. Therefore, this review will discuss the major and most recent advances in this field of research, with a primary emphasis on neuroprotection. This review will also discuss the major pitfalls present in the field, with a particular focus on model species and their impact on the development of novel therapies.

Keywords: astrocyte; glia; neuroprotection; neurotoxicity; neurotrauma.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources