Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jun:148:106426.
doi: 10.1016/j.prostaglandins.2020.106426. Epub 2020 Feb 4.

Synthesis and function of fatty acids and oxylipins, with a focus on Caenorhabditis elegans

Affiliations
Review

Synthesis and function of fatty acids and oxylipins, with a focus on Caenorhabditis elegans

N Z Mokoena et al. Prostaglandins Other Lipid Mediat. 2020 Jun.

Abstract

Polyunsaturated fatty acids (PUFAs) exhibit a diverse range of important biological functions in most biological systems. These PUFAs can be oxygenated via enzymatic or free radical-mediated reactions to form bioactive oxygenated lipid mediators termed oxylipins. Eicosanoids are broad class of oxylipins that are transient and locally synthesized signalling molecules, including prostaglandins, leukotrienes, lipoxins and thromboxanes, which mediate various physiological responses, such as inflammation. In addition to arachidonic acid-derived eicosanoids, current developments in lipidomic methodologies have brought attention to vast number of oxylipins produced from other PUFAs, including omega-3. Although, the molecular mechanisms of how PUFAs and oxylipins contribute to majority of the fundamental biological processes are largely unclear, a model organism Caenorhabditis elegans remains a powerful model for exploring lipid metabolism and functions of PUFAs and oxylipins. For instance, the ability of C. elegans to modify fatty acid composition with dietary supplementation and genetic manipulation enables the dissection of the roles of omega-3 and omega-6 PUFAs in many biological processes that include aging, reproduction, and neurobiology. However, much remains to be elucidated concerning the roles of oxylipins, but thus far, C. elegans is well-known for the synthesis of vast set of cytochrome (CYP) eicosanoids. These CYP eicosanoids are extremely susceptible to changes in the relative bioavailability of the different PUFAs, thus providing a better insight into complex mechanisms connecting essential dietary fatty acids to various biological processes. Therefore, this review provides an overview of the synthesis and function of PUFAs and oxylipins in mammals. It also focusses on what is known regarding the production of PUFAs and oxylipins in C. elegans and their functions.

Keywords: Arachidonic acid; Caenorhabditis elegans; Eicosanoids; Oxylipins; Polyunsaturated fatty acids.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources