Voltammetric Sensor Based on Molecularly Imprinted Chitosan-Carbon Nanotubes Decorated with Gold Nanoparticles Nanocomposite Deposited on Boron-Doped Diamond Electrodes for Catechol Detection
- PMID: 32033041
- PMCID: PMC7040598
- DOI: 10.3390/ma13030688
Voltammetric Sensor Based on Molecularly Imprinted Chitosan-Carbon Nanotubes Decorated with Gold Nanoparticles Nanocomposite Deposited on Boron-Doped Diamond Electrodes for Catechol Detection
Abstract
Phenolic compounds such as catechol are present in a wide variety of foods and beverages; they are of great importance due to their antioxidant properties. This research presents the development of a sensitive and biocompatible molecular imprinted sensor for the electrochemical detection of catechol, based on natural biopolymer-electroactive nanocomposites. Gold nanoparticle (AuNP)-decorated multiwalled carbon nanotubes (MWCNT) have been encapsulated in a polymeric chitosan (CS) matrix. This chitosan nanocomposite has been used to develop a molecular imprinted polymers (MIP) in the presence of catechol on a boron-doped diamond (BDD) electrode. The structure of the decorated MWCNT has been studied by TEM, whereas the characterization of the sensor surface has been imaged by AFM, demonstrating the satisfactory adsorption of the film and the adequate coverage of the decorated carbon nanotubes on the electrode surface. The electrochemical response of the sensor has been analyzed by cyclic voltammetry (CV) where excellent reproducibility and repeatability to catechol detection in the range of 0 to 1 mM has been found, with a detection limit of 3.7 × 10-5 M. Finally, the developed sensor was used to detect catechol in a real wine sample.
Keywords: BDD electrode; catechol; chitosan; electrochemical sensor; molecular imprinted polymer.
Conflict of interest statement
There are no conflicts to declare.
Figures
References
-
- Datta S., Kanjilal B., Sarkar P. Electrochemical Sensor for Detection of Polyphenols in Tea and Wine with Differential Pulse Voltammetry and Electrochemical Impedance Spectroscopy Utilizing Tyrosinase and Gold Nanoparticles Decorated Biomembrane. J. Electrochem. Soc. 2017;164:118–126. doi: 10.1149/2.0971704jes. - DOI
-
- Keshvari F., Bahram M. Selective, sensitive and reliable colorimetric sensor for catechol detection based on anti-aggregation of unmodified gold nanoparticles utilizing boronic acid–diol reaction: optimization by experimental design methodology. J. Iran. Chem. Soc. 2017;14:977–984. doi: 10.1007/s13738-017-1047-7. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
