Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Oct;2(10):1307-17.
doi: 10.1101/gad.2.10.1307.

Myosin heavy-chain mutations that disrupt Caenorhabditis elegans thick filament assembly

Affiliations
Free article

Myosin heavy-chain mutations that disrupt Caenorhabditis elegans thick filament assembly

A Bejsovec et al. Genes Dev. 1988 Oct.
Free article

Abstract

We have investigated Caenorhabditis elegans mutants in which altered unc-54 myosin heavy-chain protein interferes with assembly of thick myofilaments. These mutants have a dominant, muscle-defective phenotype, because altered myosin heavy-chain B (MHC B), the product of the unc-54 gene, disrupts assembly of wild-type MHC B. The mutant MHC B also interferes with assembly of wild-type myosin heavy-chain A (MHC A), the product of another MHC gene expressed in body-wall muscle cells. Because of disrupted MHC A assembly, dominant unc-54 mutants also exhibit a recessive-lethal phenotype. Dominant unc-54 mutations are missense alleles, and the defects in thick filament assembly result from mutant protein that is of normal molecular weight. Accumulation of mutant MHC B in amounts as little as 2% of wild-type levels is sufficient to disrupt assembly of both wild-type MHC A and MHC B. Dominant unc-54 mutations occur at remarkably high frequency following ethylmethane sulfonate (EMS) mutagenesis; their frequency is approximately equal to that of recessive, loss-of-function mutations. This unusually high gain-of-function frequency implies that many different amino acid substitutions in the myosin heavy-chain B protein can disrupt thick filament assembly.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources