Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Feb 11;4(3):500-513.
doi: 10.1182/bloodadvances.2019001223.

Home vs hospital treatment of low-risk venous thromboembolism: a systematic review and meta-analysis

Affiliations
Meta-Analysis

Home vs hospital treatment of low-risk venous thromboembolism: a systematic review and meta-analysis

Rasha Khatib et al. Blood Adv. .

Abstract

Increasing evidence supports the safety and effectiveness of managing low-risk deep vein thrombosis (DVT) or pulmonary embolism (PE) in outpatient settings. We performed a systematic review to assess safety and effectiveness of managing patients with DVT or PE at home compared with the hospital. Medline, Embase, and Cochrane databases were searched up to July 2019 for relevant randomized clinical trials (RCTs), and prospective cohort studies. Two investigators independently screened titles and abstracts of identified citations and extracted data from relevant full-text papers. Risk ratios (RRs) were calculated, and certainty of evidence was assessed using Grading of Recommendations Assessment, Development and Evaluation (GRADE). Seven RCTs (1922 patients) were included in meta-analyses on managing patients with DVT. Pooled estimates indicated decreased risk of PE (RR = 0.64; 95% confidence interval [CI], 0.44-0.93) and recurrent DVT (RR = 0.61; 95% CI, 0.42-0.90) for home management, both with moderate certainty of the evidence. Reductions in mortality and major bleeding were not significant, both with low certainty of the evidence. Two RCTs (445 patients) were included in meta-analyses on home management of low-risk patients with PE. Pooled estimates indicated no significant difference in all-cause mortality, recurrent PE, and major bleeding, all with low certainty of the evidence. Results of pooled estimates from 3 prospective cohort studies (234 patients) on home management of PE showed similar results. Our findings indicate that low-risk DVT patients had similar or lower risk of patient-important outcomes with home treatment compared with hospital treatment. In patients with low-risk PE, there was important uncertainty about a difference between home and hospital treatment.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest disclosure: R.K. received research support from Bristol-Myers Squibb and Takeda. D.M.W received research support and consulting fees from Roche Diagnostics. H.J.S. was the principal investigator for the McMaster GRADE Centre and received funding from ASH that supported this systematic review. The remaining authors declare no competing financial interests.

Figures

Figure 1.
Figure 1.
Treatment of DVT at home vs in hospital: RCTs. Risk of bias legend: (A) random sequence generation (selection bias);(B) allocation concealment (selection bias); (C) blinding of participants and personnel (performance bias); (D) blinding of outcome assessment (detection bias); (E) incomplete outcome data (attrition bias); (F) selective reporting (reporting bias); and (G) other bias.
Figure 2.
Figure 2.
Treatment of PE at home vs in hospital: RCTs. Risk of bias legend: (A) random sequence generation (selection bias); (B) allocation concealment (selection bias); (C) blinding of participants and personnel (performance bias); (D) blinding of outcome assessment (detection bias); (E) incomplete outcome data (attrition bias); (F) selective reporting (reporting bias); and (G) other bias.
Figure 3.
Figure 3.
Treatment of PE at home vs in hospital: observational prospective studies. Siragusa et al included PE and DVT patients; the meta-analysis presents outcomes for PE patients only.

References

    1. Tagalakis V, Patenaude V, Kahn SR, Suissa S. Incidence of and mortality from venous thromboembolism in a real-world population: the Q-VTE study cohort. Am J Med. 2013;126(9):832.e13-832.e21. - PubMed
    1. Heit JA, Silverstein MD, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ III. Predictors of survival after deep vein thrombosis and pulmonary embolism: a population-based, cohort study. Arch Intern Med. 1999;159(5):445-453. - PubMed
    1. McRae SJ, Ginsberg JS. Initial treatment of venous thromboembolism [published corrections appear in Circulation. 2004;110(24 suppl 1):IV33 and Circulation. 2005;111(3):378]. Circulation. 2004;110(9 suppl 1):I3-I9. - PubMed
    1. Koopman MM, Prandoni P, Piovella F, et al. ; The Tasman Study Group . Treatment of venous thrombosis with intravenous unfractionated heparin administered in the hospital as compared with subcutaneous low-molecular-weight heparin administered at home. N Engl J Med. 1996;334(11):682-687. - PubMed
    1. Levine M, Gent M, Hirsh J, et al. . A comparison of low-molecular-weight heparin administered primarily at home with unfractionated heparin administered in the hospital for proximal deep-vein thrombosis. N Engl J Med. 1996;334(11):677-681. - PubMed

Publication types