Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 May 6:49:163-180.
doi: 10.1146/annurev-biophys-121219-081520. Epub 2020 Feb 4.

Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates

Affiliations
Review

Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates

Vickery L Arcus et al. Annu Rev Biophys. .

Abstract

We review the adaptations of enzyme activity to different temperatures. Psychrophilic (cold-adapted) enzymes show significantly different activation parameters (lower activation enthalpies and entropies) from their mesophilic counterparts. Furthermore, there is increasing evidence that the temperature dependence of many enzyme-catalyzed reactions is more complex than is widely believed. Many enzymes show curvature in plots of activity versus temperature that is not accounted for by denaturation or unfolding. This is explained by macromolecular rate theory: A negative activation heat capacity for the rate-limiting chemical step leads directly to predictions of temperature optima; both entropy and enthalpy are temperature dependent. Fluctuations in the transition state ensemble are reduced compared to the ground state. We show how investigations combining experiment with molecular simulation are revealing fundamental details of enzyme thermoadaptation that are relevant for understanding aspects of enzyme evolution. Simulations can calculate relevant thermodynamic properties (such as activation enthalpies, entropies, and heat capacities) and reveal the molecular mechanisms underlying experimentally observed behavior.

Keywords: enthalpy–entropy trade-off; enzyme catalysis; enzyme evolution; macromolecular rate theory; molecular dynamics; transition state theory.

PubMed Disclaimer

Publication types

LinkOut - more resources