Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 10;11(1):808.
doi: 10.1038/s41467-020-14454-2.

Training deep quantum neural networks

Affiliations

Training deep quantum neural networks

Kerstin Beer et al. Nat Commun. .

Abstract

Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. A general quantum feedforward neural network.
A quantum neural network has an input, output, and L hidden layers. We apply the perceptron unitaries layerwise from top to bottom (indicated with colours for the first layer): first the violet unitary is applied, followed by the orange one, and finally the yellow one.
Fig. 2
Fig. 2. Numerical results.
In both plots, the insets show the behaviour of the quantum neural network under approximate depolarizing noise. The colours indicate the strength t of the noise: black t = 0, violet t = 0.0033, orange t = 0.0066, yellow t = 0.01. For a more detailed discussion of the noise model see Supplementary Note 3 and Supplementary Fig. 3. Panel (a) shows the ability of the network to generalize. We trained a 3-3-3 network with ϵ = 0.1, η = 2∕3 for 1000 rounds with n = 1, 2, …, 8 training pairs and evaluated the cost function for a set of 10 test pairs afterwards. We averaged this over 20 rounds (orange points) and compared the result with the estimated value of the optimal achievable cost function (violet points). Panel (b) shows the robustness of the QNN to noisy data. We trained a 2-3-2 network with ϵ = 0.1, η = 1 for 300 rounds with 100 training pairs. In the plot, the number on the x-axis indicates how many of these pairs were replaced by a pair of noisy (i.e. random) pairs and the cost function is evaluated for all “good” test pairs.

References

    1. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
    1. Nielsen, M. A. Neural Networks and Deep Learning (Determination Press, 2015).
    1. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349:255–260. doi: 10.1126/science.aaa8415. - DOI - PubMed
    1. Bishop, C. Pattern Recognition and Machine Learning. Information Science and Statistics (Springer-Verlag, 2006).
    1. Prati, E., Rotta, D., Sebastiano, F. & Charbon, E. From the quantum Moore’s law toward silicon based universal quantum computing. in 2017 IEEE ICRC (2017).

Publication types