Increased m6A methylation level is associated with the progression of human abdominal aortic aneurysm
- PMID: 32042813
- PMCID: PMC6989874
- DOI: 10.21037/atm.2019.12.65
Increased m6A methylation level is associated with the progression of human abdominal aortic aneurysm
Abstract
Background: The role of N6-methyladenosine (m6A) modification in abdominal aortic aneurysm (AAA) has not been extensively studied. This study therefore aimed to investigate m6A RNA methylation and the expressions of the corresponding modulators in AAA.
Methods: A comparative study between AAA tissue samples (n=32) and healthy aortas (n=12) was performed using m6A methylation quantification for messenger RNA (mRNA) m6A status, quantitative polymerase chain reaction (qPCR), and western blot for the expressions of m6A modulators and immunohistochemistry (IHC) to detect locations of the modulators in AAA tissues.
Results: The m6A level significantly increased in AAA as compared to healthy aorta tissues. Among AAA patients, the high m6A level represented an even greater risk of AAA rupture as compared to non-ruptured AAA [odds ratio (OR), 1.370; 95% confidence interval (CI), 1.007-1.870]. The major N6-adenosine modulators, including YTHDF1, YTHDF3, FTO, and METTL14, are the main factors involved in aberrant m6A modification and the expression of both was significantly correlated to the proportion of m6A in total mRNA. Clinically, YTHDF3 represented an even greater risk of rupture (OR, 1.036; 95% CI, 1.001-1.072). Regarding the cellular location, METTL14 seemed to be associated with inflammatory infiltrates and neovascularization. Furthermore, a strong correlation was seen between FTO and aneurysmal smooth muscle cells (SMCs), YTHDF3, and macrophage infiltrate.
Conclusions: We were first to observe m6A modification in human AAA tissues. The results also reveal the important roles of m6A modulators, including YTHDF3, FTO, and METTL14, in the pathogenesis of human AAA and provide a new view on m6A modification in AAA. Our findings suggest a potential mechanism of epigenetic alterations in clinical AAA.
Keywords: Abdominal aortic aneurysm (AAA); N6-methyladenosine RNA methyltransferase (m6A RNA methyltransferase); N6-methyladenosine modification (m6A modification); epigenetics.
2019 Annals of Translational Medicine. All rights reserved.
Conflict of interest statement
Conflicts of Interest: The authors have no conflicts of interest to declare.
Figures






References
-
- Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 2006;113:e463-654. - PubMed
-
- Erbel R, Aboyans V, Boileau C, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 2014;35:2873-926. 10.1093/eurheartj/ehu281 - DOI - PubMed
-
- Han YS, Zhang J, Xia Q, et al. A comparative study on the medium-long term results of endovascular repair and open surgical repair in the management of ruptured abdominal aortic aneurysms. Chin Med J (Engl) 2013;126:4771-9. - PubMed
LinkOut - more resources
Full Text Sources