Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Nov:140:243-55.
doi: 10.1242/jeb.140.1.243.

Kangaroo rat locomotion: design for elastic energy storage or acceleration?

Affiliations

Kangaroo rat locomotion: design for elastic energy storage or acceleration?

A A Biewener et al. J Exp Biol. 1988 Nov.

Abstract

Mechanical stresses (force/cross-sectional area) acting in muscles, tendons and bones of the hindlimbs of kangaroo rats (Dipodomys spectabilis) were calculated during steady-speed hops and vertical jumps. Stresses were determined from both high-speed ciné films (light and X-ray) and force plate recordings, as well as from in vivo tendon force recordings. Stresses in each hindlimb support element during hopping (1.6-3.1 m s-1) were generally only 33% of those acting during jumping (greater than or equal to 40 cm height): ankle extensor muscles, 80 +/- 12 (S.D.) versus 297 +/- 42 kPa; ankle extensor tendons, 7.9 +/- 1.5 versus 32.7 +/- 4.8 MPa; tibia, -29 +/- 5 versus -110 +/- 25 MPa (all values are for hopping versus jumping). The magnitude of stress in each structure during these locomotor activities was similarly matched to the strength of each element, so that a consistent safety factor to failure is achieved for the hindlimb as a whole (1.5-2.0). The large stresses during jumping were correlated with a three-fold increase in ground reaction forces exerted on the ground compared with the fastest steady hopping speeds. We conclude that, for its size, the kangaroo rat has disproportionately large hindlimb muscles, tendons and bones to withstand the large forces associated with rapid acceleration to avoid predation, which limits their ability to store and recover elastic strain energy. Middle ear morphology and behavioural observations of kangaroo rats jumping vertically to avoid predation by owls and rattlesnakes support this view.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources