S-seco-porphyrazine as a new member of the seco-porphyrazine family - Synthesis, characterization and photocytotoxicity against cancer cells
- PMID: 32044518
- DOI: 10.1016/j.bioorg.2020.103634
S-seco-porphyrazine as a new member of the seco-porphyrazine family - Synthesis, characterization and photocytotoxicity against cancer cells
Abstract
An important subgroup within the porphyrazine (Pz) family constitutes seco-porphyrazines, in the chemical structure of which one pyrrole unit is opened in the oxidative process. So far, there are only limited data on N-seco- and C-seco-Pzs. Here, the synthesis of a novel member of the Pzs seco-family, represented by an S-seco-tribenzoporphyrazine analogue, 22,23-bis(4-(3,5-dibutoxycarbonylphenoxy)butylsulfanyl)tribenzo[b,g,l]-22,23-dioxo-22,23-seco-porphyrazinato magnesium(II), is reported, with moderate 34% yield. The new derivative was characterized using NMR spectroscopy, UV-Vis spectroscopy, and mass spectrometry. In the photochemical study performed following the indirect chemical method with 1,3-diphenylisobenzofuran, S-seco-Pz revealed a high singlet oxygen quantum yield of 0.27 in DMF. Potential photocytotoxicity of S-seco-Pz was assessed in vitro on three cancer cell lines - two oral squamous cell carcinoma cell lines derived from the tongue (CAL 27, HSC-3) and human cervical epithelial adenocarcinoma cells (HeLa). In the biological study, the macrocycle was tested in its free form and after loading into liposomes. It is worth noting that S-seco-Pz was found to be non-toxic in the dark, with cell viability levels over 80%. The photocytotoxic IC50 values for free S-seco-Pz were 0.61, 0.18, and 4.1 µM for CAL 27, HSC-3 and HeLa cells, respectively. Four different liposomal compositions were analyzed, and the cationic liposomes revealed the highest photokilling efficacy, with the IC50 values for CAL 27, HSC-3, and HeLa cells at 0.24, 0.25, and 0.31 µM, respectively. The results of the photocytotoxicity study indicate that the new S-seco-tribenzoporphyrazine can be considered as a potential photosensitizer in photodynamic therapy of cancer, along with the developed cationic liposomal nanocarrier.
Keywords: Liposomes; NMR spectroscopy; Photodynamic therapy; Porphyrazine; Singlet oxygen; Tribenzoporphyrazine.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical