Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 3;92(5):4053-4064.
doi: 10.1021/acs.analchem.9b05658. Epub 2020 Feb 21.

Surface Enhanced Raman Spectroscopy for Quantitative Analysis: Results of a Large-Scale European Multi-Instrument Interlaboratory Study

Affiliations

Surface Enhanced Raman Spectroscopy for Quantitative Analysis: Results of a Large-Scale European Multi-Instrument Interlaboratory Study

Stefano Fornasaro et al. Anal Chem. .

Abstract

Surface-enhanced Raman scattering (SERS) is a powerful and sensitive technique for the detection of fingerprint signals of molecules and for the investigation of a series of surface chemical reactions. Many studies introduced quantitative applications of SERS in various fields, and several SERS methods have been implemented for each specific application, ranging in performance characteristics, analytes used, instruments, and analytical matrices. In general, very few methods have been validated according to international guidelines. As a consequence, the application of SERS in highly regulated environments is still considered risky, and the perception of a poorly reproducible and insufficiently robust analytical technique has persistently retarded its routine implementation. Collaborative trials are a type of interlaboratory study (ILS) frequently performed to ascertain the quality of a single analytical method. The idea of an ILS of quantification with SERS arose within the framework of Working Group 1 (WG1) of the EU COST Action BM1401 Raman4Clinics in an effort to overcome the problematic perception of quantitative SERS methods. Here, we report the first interlaboratory SERS study ever conducted, involving 15 laboratories and 44 researchers. In this study, we tried to define a methodology to assess the reproducibility and trueness of a quantitative SERS method and to compare different methods. In our opinion, this is a first important step toward a "standardization" process of SERS protocols, not proposed by a single laboratory but by a larger community.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Organization structure of the Raman4Clinics WG1 interlaboratory study (ILS).
Figure 2
Figure 2
Single experiment validation scheme.
Figure 3
Figure 3
Instruments used in the study.
Figure 4
Figure 4
Comparison of spectra collected by different participants (P04, P06, P09, P13, and P16) at five concentration levels (C0, C2, C4, C6, C8) for the cAu@785 method (see Supporting Information, section S4, Table S1 for the actual concentrations and more details). On the left, spectra are shown before preprocessing. On the right, spectra are shown after preprocessing, offset for clarity.
Figure 5
Figure 5
Data selection workflow.
Figure 6
Figure 6
Plot of estimated values against the actual values for the test set samples for different methods by different participants (P01–P18). The dotted line is the line of equality. For a complete representation of the uncertainty of each individual prediction, see Figures S4–S9 in the Supporting Information.
Figure 7
Figure 7
Residual plots for the TEST sets of the six SERS methods. Concentration levels of the TEST sets (X1–X5; for actual concentrations, see Supporting Information, Table S1) are aggregated according to each participant (P01–P18). The limits of the colored areas are the upper and lower quartiles, so each area spans the interquartile range (IQR) for each method; The two dashed lines outside the colored areas range to the extreme data point (<1.5 × IQR). Residuals values were rescaled using the range of the reference values in the test set data to enable comparison between calibrations obtained with different ranges.
Figure 8
Figure 8
Probability density function (PDF) and boxplots of the normalized residuals for the six SERS methods.

References

    1. Langer J.; Jimenez de Aberasturi D.; Aizpurua J.; Alvarez-Puebla R. A.; Auguie B.; Baumberg J. J.; Bazan G. C.; Bell S. E. J.; Boisen A.; Brolo A. G.; Choo J.; Cialla-May D.; Deckert V.; Fabris L.; Faulds K.; Garcia de Abajo F. J.; Goodacre R.; Graham D.; Haes A. J.; Haynes C. L.; Huck C.; Itoh T.; Kall M.; Kneipp J.; Kotov N. A.; Kuang H.; Le Ru E. C.; Lee H. K.; Li J.-F.; Ling X. Y.; Maier S. A.; Mayerhofer T.; Moskovits M.; Murakoshi K.; Nam J.-M.; Nie S.; Ozaki Y.; Pastoriza-Santos I.; Perez-Juste J.; Popp J.; Pucci A.; Reich S.; Ren B.; Schatz G. C.; Shegai T.; Schlucker S.; Tay L.-L.; Thomas K. G.; Tian Z.-Q.; Van Duyne R. P.; Vo-Dinh T.; Wang Y.; Willets K. A.; Xu C.; Xu H.; Xu Y.; Yamamoto Y. S.; Zhao B.; Liz-Marzan L. M. Present and Future of Surface Enhanced Raman Scattering. ACS Nano 2020, 14, 28.10.1021/acsnano.9b04224. - DOI - PMC - PubMed
    1. Graham D.; Goodacre R.; Arnolds H.; Masson J. F.; Schatz G.; Baumberg J.; Kim D. H.; Aizpurua J.; Lum W.; Silvestri A.; de Nijs B.; Xu Y.; Di Martino G.; Natan M.; Schlucker S.; Wuytens P.; Bruzas I.; Kuttner C.; Hardy M.; Chikkaraddy R.; Martin Sabanes N.; Delfino I.; Dawson P.; Gawinkowski S.; Bontempi N.; Mahajan S.; Reich S.; Hourahine B.; Bell S.; Krolikowska A.; Porter M.; Keeler A.; Kamp M.; Fountain A.; Fasolato C.; Giorgis F.; Otero J. C.; Matricardi C.; Van Duyne R.; Lombardi J.; Deckert V.; Velleman L. Theory of SERS enhancement: general discussion. Faraday Discuss. 2017, 205, 173–211. 10.1039/C7FD90095C. - DOI - PubMed
    1. Sackmann M.; Materny A. Surface enhanced Raman scattering (SERS)—a quantitative analytical tool?. J. Raman Spectrosc. 2006, 37, 305–310. 10.1002/jrs.1443. - DOI
    1. Bell S. E. J.; Stewart A. In Surface Enhanced Raman Spectroscopy; Schlücker S., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2010; pp 71–86.
    1. Aitchison H.; Aizpurua J.; Arnolds H.; Baumberg J.; Bell S.; Bonifacio A.; Chikkaraddy R.; Dawson P.; de Nijs B.; Deckert V.; Delfino I.; Di Martino G.; Eremina O.; Faulds K.; Fountain A.; Gawinkowski S.; Gomez Castano M.; Goodacre R.; Gracie J.; Graham D.; Guicheteau J.; Hardwick L.; Hardy M.; Heck C.; Jamieson L.; Kamp M.; Keeler A.; Kuttner C.; Langer J.; Mahajan S.; Martin Sabanes N.; Murakoshi K.; Porter M.; Schatz G.; Schlucker S.; Tian Z.; Tripathi A.; Van Duyne R.; Vikesland P. Analytical SERS: general discussion. Faraday Discuss. 2017, 205, 561–600. 10.1039/C7FD90096A. - DOI - PubMed

Publication types