Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 4;142(9):4276-4284.
doi: 10.1021/jacs.9b12071. Epub 2020 Feb 21.

Optical Supramolecular Sensing of Creatinine

Affiliations

Optical Supramolecular Sensing of Creatinine

Andrés F Sierra et al. J Am Chem Soc. .

Abstract

Calix[4]pyrrole phosphonate-cavitands were used as receptors for the design of supramolecular sensors for creatinine and its lipophilic derivative hexylcreatinine. The sensing principle is based on indicator displacement assays of an inherently fluorescent guest dye or a black-hole quencher from the receptor's cavity by means of competition with the creatinine analytes. The systems were thermodynamically and kinetically characterized regarding their 1:1 binding properties by means of nuclear magnetic resonance spectroscopy (1H and 31P NMR), isothermal titration calorimetry, and optical spectroscopies (UV/vis absorption and fluorescence). For the use of the black-hole indicator dye, the calix[4]pyrrole was modified with a dansyl chromophore as a signaling unit that engages in Förster resonance energy transfer with the indicator dye. The 1:1 binding constants of the indicator dyes are in the range of 107 M-1, while hexylcreatinine showed values around (2-4) × 105 M-1. The competitive displacement of the indicators by hexylcreatinine produced supramolecular fluorescence turn-on sensors that work at micromolar analyte concentrations that are compatible with those observed for healthy as well as sick patients. The limit of detection for one of the systems reached submicromolar ranges (110 nM).

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources