Implication of 5-HT in the Dysregulation of Chloride Homeostasis in Prenatal Spinal Motoneurons from the G93A Mouse Model of Amyotrophic Lateral Sclerosis
- PMID: 32046135
- PMCID: PMC7039234
- DOI: 10.3390/ijms21031107
Implication of 5-HT in the Dysregulation of Chloride Homeostasis in Prenatal Spinal Motoneurons from the G93A Mouse Model of Amyotrophic Lateral Sclerosis
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and muscle paralysis. The early presymptomatic onset of abnormal processes is indicative of cumulative defects that ultimately lead to a late manifestation of clinical symptoms. It remains of paramount importance to identify the primary defects that underlie this condition and to determine how these deficits lead to a cycle of deterioration. We recently demonstrated that prenatal E17.5 lumbar spinal motoneurons (MNs) from SOD1G93A mice exhibit a KCC2-related alteration in chloride homeostasis, i.e., the EGABAAR is more depolarized than in WT littermates. Here, using immunohistochemistry, we found that the SOD1G93A lumbar spinal cord is less enriched with 5-HT descending fibres than the WT lumbar spinal cord. High-performance liquid chromatography confirmed the lower level of the monoamine 5-HT in the SOD1G93A spinal cord compared to the WT spinal cord. Using ex vivo perforated patch-clamp recordings of lumbar MNs coupled with pharmacology, we demonstrated that 5-HT strongly hyperpolarizes the EGABAAR by interacting with KCC2. Therefore, the deregulation of the interplay between 5-HT and KCC2 may explain the alteration in chloride homeostasis detected in prenatal SOD1G93A MNs. In conclusion, 5-HT and KCC2 are two likely key factors in the presymptomatic phase of ALS, particular in familial ALS involving the SOD1G93A mutation.
Keywords: 5-HT; ALS; GABA/glycine; SOD1G93A mouse; chloride homeostasis; development; motoneuron; perforated patch-clamp; spinal cord.
Conflict of interest statement
The authors declare no conflicts of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
Figures
References
-
- Benedetti L., Ghilardi A., Rottoli E., De Maglie M., Prosperi L., Perego C., Baruscotti M., Bucchi A., Del Giacco L., Francolini M. INaP selective inhibition reverts precocious inter- and motorneurons hyperexcitability in the Sod1-G93R zebrafish ALS model. Sci. Rep. 2016;6:24515. doi: 10.1038/srep24515. - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous
