Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan 14;11(6):1555-1567.
doi: 10.7150/jca.37529. eCollection 2020.

Progress in Animal Models of Pancreatic Ductal Adenocarcinoma

Affiliations
Review

Progress in Animal Models of Pancreatic Ductal Adenocarcinoma

Kaiwen Kong et al. J Cancer. .

Abstract

As a common gastrointestinal tumor, the incidence of pancreatic cancer has been increasing in recent years. The disease shows multi-gene, multi-step complex evolution from occurrence to dissemination. Furthermore, pancreatic cancer has an insidious onset and an extremely poor prognosis, so it is difficult to obtain cinical specimens at different stages of the disease, and it is, therefore, difficult to observe tumorigenesis and tumor development in patients with pancreatic cancer. At present, no standard protocols stipulate clinical treatment of pancreatic cancer, and the benefit rate of new targeted therapies is low. For this reason, a well-established preclinical model of pancreatic cancer must be established to allow further exploration of the occurrence, development, invasion, and metastasis mechanism of pancreatic cancer, as well as to facilitate research into new therapeutic targets. A large number of animal models of pancreatic cancer are currently available, including a cancer cell line-based xenograft, a patient-derived xenograft, several mouse models (including transgenic mice), and organoid models. These models have their own characteristics, but they still cannot perfectly predict the clinical outcome of the new treatment. In this paper, we present the distinctive features of the currently popular pancreatic cancer models, and discuss their preparation methods, clinical relations, scientific purposes and limitations.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Figure 1
Figure 1
Tetracycline-induced TetO-Cre for GEMM. A: Cre mice (TRE-Cre, also called tetO-Cre) controlled by a tetracycline-responsive element (TRE, also called tetO). C: Mice expressing a tetracycline-responsive transcriptional activator rtTA or tTA driven by a tissue-specific promoter.

Similar articles

Cited by

References

    1. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. The New England journal of medicine. 2014;371:1039. - PubMed
    1. Wilson RH, Deeds F, Cox AJ. The Toxicity and Carcinogenic Activity of 2-Acetaminofluorene. Cancer Research. 1941;1:595–608.
    1. Hruban RH, Adsay NV, Alboressaavedra J, Compton C, Garrett ES, Goodman SN. et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. American Journal of Surgical Pathology. 2001;25:579–86. - PubMed
    1. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52. - PubMed
    1. Hruban RH, Takaori K, Klimstra DS, Adsay NV, Alboressaavedra J, Biankin AV. et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. American Journal of Surgical Pathology. 2004;28:977. - PubMed