Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 12;11(1):850.
doi: 10.1038/s41467-020-14683-5.

Mahan excitons in room-temperature methylammonium lead bromide perovskites

Affiliations

Mahan excitons in room-temperature methylammonium lead bromide perovskites

Tania Palmieri et al. Nat Commun. .

Abstract

In a seminal paper, Mahan predicted that excitonic bound states can still exist in a semiconductor at electron-hole densities above the insulator-to-metal Mott transition. However, no clear evidence for this exotic quasiparticle, dubbed Mahan exciton, exists to date at room temperature. In this work, we combine ultrafast broadband optical spectroscopy and advanced many-body calculations to reveal that organic-inorganic lead-bromide perovskites host Mahan excitons at room temperature. Persistence of the Wannier exciton peak and the enhancement of the above-bandgap absorption are observed at all achievable photoexcitation densities, well above the Mott density. This is supported by the solution of the semiconductor Bloch equations, which confirms that no sharp transition between the insulating and conductive phase occurs. Our results demonstrate the robustness of the bound states in a regime where exciton dissociation is otherwise expected, and offer promising perspectives in fundamental physics and in room-temperature applications involving high densities of charge carriers.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Absorption spectra and exciton ionization ratio.
a Evolution of the bound exciton gas in a bulk semiconductor with increasing carrier density. Two scenarios are possible: (i) bound excitons are ionized into an e–h plasma and the Mott transition to a metallic state takes place; (ii), (iii) e–h correlations still persist in the form of Mahan excitons, i.e. bound states in the Fermi sea in a (ii) chemically-doped and (iii) photodoped semiconductor. EF indicates the Fermi energy; EF,c and EF,v represent the quasi-Fermi energies of the conduction band and valence band, respectively. b Schematic representation of the optical absorption spectrum of a bulk semiconductor in the presence of Wannier excitons (black curve), and its modification at high carrier densities. The Mott transition manifests itself with the ionization of the Wannier exciton (blue curve), whereas the Mahan exciton scenario features the persistence of the Wannier peak and the enhancement of the absorption continuum (red curve). c Absorption spectrum of CH3NH3PbBr3 single crystals as obtained from the ellipsometry data (dots), fitted with Elliott theory (solid line) and resulting in a binding energy Eb = 71 meV, linewidth Γ = 34 meV, and single-particle gap energy Eg = 2.42 eV. The blue and red dotted lines represent the distinct contributions of the Wannier exciton and the continuum, respectively. d Exciton ionization ratio as a function of the excitation density, where nfreen = 0 corresponds to an exciton gas and nfreen = 1 to a fully ionized plasma, as calculated from the theory of ionization equilibrium (TIE, red dots). The vertical line indicates the Mott critical density, found at nM ~ 8 × 1017 cm−3. The solid line represents the ionization ratio calculated with the Saha equation, and it is added for comparison.
Fig. 2
Fig. 2. Ultrafast transient reflectivity measurements.
a Color-coded map of ΔRR as a function of probe photon energy and time delay between pump and probe. The pump photon energy is 3.10 eV and the estimated carrier density is n = 5 × 1018 cm−3. The time resolution is 50 fs. b, c ΔRR transient spectra in the temporal windows b from −100 fs to 500 fs and c from 500 fs to 8 ps.
Fig. 3
Fig. 3. Reflectivity lineshape analysis.
ac Temporal evolution of the oscillator strength (ΔOS, a), peak position (ΔEx, b) and linewidth (ΔΓ, c), obtained through the fit of ΔRR(ωt) at the excitation density of n = 5 × 1018 cm−3. d, e Evolution of the absorption spectra α(ωt) of CH3NH3PbBr3 single crystals in the vicinity of the excitonic resonance as calculated with the Tauc-Lorentz fit of ΔRR(ωt) in the temporal windows (d) from 0 fs to 500 fs and (e) from 500 fs to 8 ps.
Fig. 4
Fig. 4. Comparison between experimental and theoretical absorption spectra.
a Experimental absorption spectrum of CH3NH3PbBr3 single crystals for the excitation densities of 5, 7.5 and 10 × 1018 cm−3 at 1 ps. Similar trends can be observed at any time delay between 500 fs and several ps. b Theoretical absorption spectra of CH3NH3PbBr3 in the presence of increasing carrier densities, as calculated with the SBE. The black arrow indicates the excitonic enhancement of the above-gap absorption associated with the presence of e–h correlations in the highly photoexcited material. In both cases, the Wannier bound exciton peak persists above nM.

References

    1. Tan Z-K, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014;9:687–692. doi: 10.1038/nnano.2014.149. - DOI - PubMed
    1. Xiao Z, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 2017;11:108–115. doi: 10.1038/nphoton.2016.269. - DOI
    1. Moskalenko, S. A. & Snoke, D. Bose–Einstein Condensation of Excitons and Biexcitons: and Coherent Nonlinear Optics with Excitons (Cambridge University Press, 2000).
    1. Mott N. Metal-insulator transition. Rev. Mod. Phys. 1968;40:677–683. doi: 10.1103/RevModPhys.40.677. - DOI
    1. Klingshirn, C. F. Semiconductor Optics (Springer Science & Business Media, 2012).