Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 19;10(40):9292-9301.
doi: 10.1039/c9sc03081f. eCollection 2019 Oct 28.

Tertiary amine-directed and involved carbonylative cyclizations through Pd/Cu-cocatalyzed multiple C-X (X = H or N) bond cleavage

Affiliations

Tertiary amine-directed and involved carbonylative cyclizations through Pd/Cu-cocatalyzed multiple C-X (X = H or N) bond cleavage

Qiu-Chao Mu et al. Chem Sci. .

Abstract

A novel Pd/Cu-cocatalyzed carbonylative cyclization by C-H activation and N-dealkylative C-N bond activation has been developed for the chemoselective construction of synthetically useful heterocycles. The N,N-dimethylamine group on o-indolyl-N,N-dimethylarylamines was found to act as both the directing group and reactive component in this C-H carbonylative cyclization reaction. Furthermore, a unique C-H oxidation/carbonylative lactonization of diarylmethylamines is firstly demonstrated under modified reaction conditions, which could be easily applicable to the one-step synthesis of multi-substituted phthalides bearing an N,O-ketal skeleton that is difficult to access by previously reported methods. Mechanistic studies implicate that Pd/Cu-cocatalyzed C-H oxidation/carbonylative lactonization is a sequential reaction system via Cu-catalyzed C(sp3)-H oxidation and Pd-catalyzed oxidative carbonylation of the C(sp2)-H bond. It was found that trace amounts of water are essential to promote the Cu-catalyzed C(sp3)-H oxidation of diarylmethylamine for the formation of the hydroxyl group, which could act as an in situ-formed directing group in the intramolecular carbonylative lactonization step.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Tertiary amine-directed C–H functionalization: single role as the directing group (previous work) and dual role as the directing group and reactive component (this work).
Scheme 2
Scheme 2. Reaction scope. The reactions were run on a 0.5 mmol scale.
Fig. 1
Fig. 1. Representative examples of biologically active molecules based on the N,O-ketal-containing phthalide core.
Scheme 3
Scheme 3. Reaction scope. The reactions were run on a 0.5 mmol scale.
Scheme 4
Scheme 4. Gram-scale reaction.
Scheme 5
Scheme 5. Control experiments and KIE experiments. aDetermined by GC-MS.
Scheme 6
Scheme 6. Two proposed mechanisms of the double C–H functionalization for Pd/Cu-cocatalyzed oxidative carbonylation/lactonization of diarylmethylamines.
Scheme 7
Scheme 7. Mechanistic studies with control experiments.
Fig. 2
Fig. 2. Calculated catalytic cycle for the double C–H functionalization of diarylmethylamines (4a) catalyzed by the Pd(ii) catalyst.
Fig. 3
Fig. 3. The free energy profiles for the Pd/Cu-cocatalyzed double C–H functionalization/carbonylation. The free energies (in kcal mol–1) are calculated at the B3lyp and BS (BS = 6–31 g (d,p) for main group elements and LanL2DZ for Pd) level of theory.
Scheme 8
Scheme 8. KIE experiments.

Similar articles

Cited by

References

    1. For recent examples on the C–H functionalization, see:

    2. Berger F., Plutschack M. B., Riegger J., Yu M. W., Speicher S., Ho M., Frank N., Ritter T. Nature. 2019;567:223. - PubMed
    3. Zhang X., Lu G., Sun M., Mahankali M., Ma Y., Zhang M., Hua W., Hu Y., Wang Q., Chen J., He G., Qi X., Sheng W., Liu P., Chen G. Nat. Chem. 2018;10:540. - PubMed
    4. Kinney R. G., Tjutrins J., Torres G. M., Liu N. J., Kulkarni O., Arndtsen B. A. Nat. Chem. 2018;10:193. - PubMed
    5. Wang P., Verma P., Xia G., Shi J., Qiao J. X., Tao S., Cheng P. T. W., Poss M. A., Farmer M. E., Yeung K.-S., Yu J.-Q. Nature. 2017;551:489. - PMC - PubMed
    6. Liao K., Negretti S., Musaev D. G., Bacsa J., Davies H. M. Nature. 2016;533:230. - PubMed
    7. Chu J. C. K., Rovis T. Nature. 2016;539:272. - PMC - PubMed
    8. Willcox D., Chappell B. G. N., Hogg K. F., Calleja J., Smalley A. P., Gaunt M. J. Science. 2016;354:851. - PubMed
    9. Zhang F. L., Hong K., Li T. J., Park H., Yu J.-Q. Science. 2016;351:252. - PMC - PubMed
    10. Shaw M. H., Shurtleff V. M., Terrett J. A., Cuthbertson J. D., Macmillan D. W. C. Science. 2016;352:1304. - PMC - PubMed
    11. Cook A. K., Schimler S. D., Matzger A. J., Sanford M. S. Science. 2016;351:1421. - PubMed
    12. Shao B., Bagdasarian A. L., Popov S., Nelson H. M. Science. 2017;355:1403. - PubMed
    13. Li X., Li X., Jiao N. J. Am. Chem. Soc. 2015;137:9246. - PubMed
    14. Xiao B., Gong T.-J., Liu Z.-J., Liu J.-H., Luo D.-F., Xu J., Liu L. J. Am. Chem. Soc. 2011;133:9250. - PubMed
    1. For selected reviews on C–H functionalization, see:

    2. Williamson J. B., Lewis S. E., Johnson III R. R., Manning I. M., Leibfarth F. A. Angew. Chem., Int. Ed. 2019;58:8654. - PubMed
    3. Abrams D. J., Provencher P. A., Sorensen E. J. Chem. Soc. Rev. 2018;47:8925. - PubMed
    4. Davies H. M. L., Morton D. ACS Cent. Sci. 2017;3:936. - PMC - PubMed
    5. Murakami K., Yamada S., Kaneda T., Itami K. Chem. Rev. 2017;117:9302. - PubMed
    6. Davies H. M. L., Morton D. J. Org. Chem. 2016;81:343. - PubMed
    7. Doyle M. P., Goldberg K. I. Acc. Chem. Res. 2012;45:777. - PubMed
    8. Yamaguchi J., Yamaguchi A. D., Itami K. Angew. Chem., Int. Ed. 2012;51:8960. - PubMed
    9. Davies H. M. L., Bois J. D., Yu J.-Q. Chem. Soc. Rev. 2011;40:1855. - PubMed
    10. Gutekunst W. R., Baran P. S. Chem. Soc. Rev. 2011;40:1976. - PubMed
    11. Wu X.-F., Neumann H., Beller M. ChemSusChem. 2013;6:229. - PubMed
    12. Gabriele B., Mancuso R., Salerno G. Eur. J. Org. Chem. 2012:6825.
    1. For selected reviews, see:

    2. Gandeepan P., Ackermann L. Chem. 2018;4:199.
    3. Ma C., Fang P., Mei T.-S. ACS Catal. 2018;8:7179.
    4. Ye W., Hu P., Zhang M., Su W. Chem. Rev. 2017;117:8864. - PubMed
    5. He J., Wasa M., Chan K. S. L., Shao Q., Yu J.-Q. Chem. Rev. 2017;117:8754. - PMC - PubMed
    6. Labinger J. A. Chem. Rev. 2017;117:8483. - PubMed
    7. Guo X.-X., Gu D.-W., Wu Z., Zhang W. Chem. Rev. 2015;115:1622. - PubMed
    8. Ye B., Cramer N. Acc. Chem. Res. 2015;48:1308. - PubMed
    9. Girard S. A., Knauber T., Li C.-J. Angew. Chem., Int. Ed. 2014;53:74. - PubMed
    10. Rouquet G., Chatani N. Angew. Chem., Int. Ed. 2013;52:11726. - PubMed
    11. Neufeldt S. R., Sanford M. S. Acc. Chem. Res. 2012;45:936. - PMC - PubMed
    12. Engle K. M., Mei T.-S., Wasa M., Yu J.-Q. Acc. Chem. Res. 2012;45:788. - PMC - PubMed
    13. Kuhl N., Hopkinson M. N., Wencel-Delord J., Glorius F. Angew. Chem., Int. Ed. 2012;51:10236. - PubMed
    14. Arockiam P. B., Bruneau C., Dixneuf P. H. Chem. Rev. 2012;112:5879. - PubMed
    15. Liu C., Zhang H., Shi W., Lei A. Chem. Rev. 2011;111:1780. - PubMed
    16. Hartwig J. F. Chem. Soc. Rev. 2011;40:1992. - PubMed
    17. Yeung C. S., Dong V. M. Chem. Rev. 2011;111:1215. - PubMed
    18. Lyons T. W., Sanford M. S. Chem. Rev. 2010;110:1147. - PMC - PubMed
    19. Chen X., Engle K. M., Wang D.-H., Yu J.-Q. Angew. Chem., Int. Ed. 2009;48:5094. - PMC - PubMed
    20. Daugulis O., Do H.-Q., Shabashov D. Acc. Chem. Res. 2009;42:1074. - PMC - PubMed
    21. Ackermann L., Vicente R., Kapdi A. R. Angew. Chem., Int. Ed. 2009;48:9792. - PubMed
    22. Giri R., Shi B.-F., Engle K. M., Maugel N., Yu J.-Q. Chem. Soc. Rev. 2009;38:3242. - PubMed
    23. Davies H. M. L., Manning J. R. Nature. 2008;451:417. - PMC - PubMed
    24. Sambiagio C., Schonbauer D., Blieck R., Dao-Huy T., Pototschnig G., Schaaf P., Wiesinger T., Zia M. F., Wencel-Delord J., Besset T., Maes B. U. W., Schnurch M. Chem. Soc. Rev. 2018;47:6603. - PMC - PubMed
    1. Zaitsev V. G., Shabashov D., Daugulis O. J. Am. Chem. Soc. 2005;127:13154. - PubMed
    2. Reddy B. V. S., Reddy L. R., Corey E. J. Org. Lett. 2006;8:3391. - PubMed
    3. Cheng X.-F., Li Y., Su Y. M., Yin F., Wang J.-Y., Sheng J., Vora H. U., Wang X. S., Yu J.-Q. J. Am. Chem. Soc. 2013;135:1236. - PMC - PubMed
    4. Gallardo-Donaire J., Martin R. J. Am. Chem. Soc. 2013;135:9350. - PubMed
    5. Luo S., Luo F.-X., Zhang X.-S., Shi Z.-J. Angew. Chem., Int. Ed. 2013;52:10598. - PubMed
    6. Lee T.-H., Jayakumar J., Cheng C.-H., Chuang S.-C. Chem. Commun. 2013;49:11797. - PubMed
    1. For selected reports, see:

    2. Cai Z.-J., Liu C.-X., Gu Q., Zheng C., You S.-L. Angew. Chem., Int. Ed. 2019;58:2149. - PubMed
    3. Plevova K., Mudrakova B., Rakovsky E., Sebesta R. J. Org. Chem. 2019;84:7312. - PubMed
    4. Zou X., Zhao H., Li Y., Gao Q., Ke Z., Xu S. J. Am. Chem. Soc. 2019;141:5334. - PubMed
    5. Cai G., Fu Y., Li Y., Wan X., Shi Z.-J. J. Am. Chem. Soc. 2007;129:7666. - PubMed
    6. Li H., Cai G.-X., Shi Z.-J. Dalton Trans. 2010;39:10442. - PubMed
    7. Liu B., Shi B. F. Synlett. 2013;24:2274.
    8. Wang Z., Li Y., Zhu F., Wu X.-F. Adv. Synth. Catal. 2016;358:2855.