Inter-laboratory adaption of age estimation models by DNA methylation analysis-problems and solutions
- PMID: 32055939
- DOI: 10.1007/s00414-020-02263-7
Inter-laboratory adaption of age estimation models by DNA methylation analysis-problems and solutions
Abstract
In recent years, a lot of age prediction models based on different CpG motives in different cell types were published determining the biological age of a person by DNA methylation. For a general employment of this technique, maybe even as a routine method, the cross-laboratory application of such models has to be examined. Therefore, we tested two different published age prediction models for blood and mouth swab samples with regard to prediction accuracy (Bekaert et al Epigenetics 10:922-930, 2015a; Bekaert et al Forensic Sci Int Genet Suppl Ser 5:e144-e145, 2015b). Both models are based on CpG sites of four genes (ASPA, EDARADD, PDE4-C, and ELOVL2), but with a different combination of CpGs for the two tissue types. A mean absolute difference (MAD) between chronological and predicted age of 9.84 and 8.32 years for blood and buccal swab models could be demonstrated, respectively, which is significantly worse than the published data, probably due to higher DNA methylation variances in some CpGs. By retraining both prediction models, the prediction accuracy could be improved to a MAD of 5.55 and 4.65 years for the renewed blood and buccal swab model, respectively. This study demonstrates the usefulness of effective DNA standards to normalize DNA methylation data for better comparison of study results.
Keywords: CpG maker; DNA methylation; Estimation of biological age; Pyrosequencing.
References
-
- Jones MJ, Goodman SJ, Kobor MS (2015) DNA methylation and healthy human aging. Aging Cell 14:924–932. https://doi.org/10.1111/acel.12349 - DOI - PubMed - PMC
-
- Boyd-Kirkup JD, Green CD, Wu G, Wang D, Han JD (2013) Epigenomics and the regulation of aging. Epigenomics 5:205–227. https://doi.org/10.2217/epi.13.5 - DOI - PubMed
-
- Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalhães JP (2012) The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 15:483–494. https://doi.org/10.1089/rej.2012.1324 - DOI - PubMed - PMC
-
- Fraga MF (2009) Genetic and epigenetic regulation of aging. Curr Opin Immunol 21:446–453. https://doi.org/10.1016/j.coi.2009.04.003 - DOI - PubMed
-
- Sedivy JM, Banumathy G, Adams PD (2008) Aging by epigenetics-a consequence of chromatin damage? Exp Cell Res 314:1909–1917. https://doi.org/10.1016/j.yexcr.2008.02.023 - DOI - PubMed - PMC
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
