Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 1:106:360-375.
doi: 10.1016/j.actbio.2020.02.009. Epub 2020 Feb 11.

Enhanced interfacial adhesion and osseointegration of anodic TiO2 nanotube arrays on ultra-fine-grained titanium and underlying mechanisms

Affiliations

Enhanced interfacial adhesion and osseointegration of anodic TiO2 nanotube arrays on ultra-fine-grained titanium and underlying mechanisms

Nan Hu et al. Acta Biomater. .

Abstract

The poor adhesion of anodic TiO2 nanotubes (TNTs) arrays on titanium (Ti) substrates adversely affects applications in many fields especially biomedical engineering. Herein, an efficient strategy is described to improve the adhesion strength of TNTs by performing grain refinement in the underlying Ti substrate via high-pressure torsion processing, as a larger number of grain boundaries can provide more interfacial mechanical anchorage. This process also improves the biocompatibility and osseointegration of TNTs by increasing the surface elastic modulus. The TNTs in length of 0.4 µm have significantly larger adhesion strength than the 2.0 µm long ones because the shorter TNTs experience less interfacial internal stress. However, post-anodization annealing reduces the fluorine concentration in TNTs and adhesion strength due to the formation of interfacial cavities during crystallization. The interfacial structure of TNTs/Ti system and the mechanism of adhesion failures are further investigated and discussed. STATEMENT OF SIGNIFICANCE: Self-assembled TiO2 nanotubes (TNTs) prepared by electrochemical anodization have a distinct morphology and superior properties, which are commonly used in photocatalytic systems, electronic devices, solar cells, sensors, as well as biomedical implants. However, the poor adhesion between the TNTs and Ti substrate has hampered wider applications. Here in this study, we describe an efficient strategy to improve the adhesion strength of TNTs by performing grain refinement in the underlying Ti substrate via high-pressure torsion (HPT) processing. The interfacial structure of TNTs/Ti system and the mechanism of adhesion failure are systematically studied and discussed. Our findings not only develop the knowledge of TNTs/Ti system, but also provide new insights into the design of Ti-based implants for orthopedic applications.

Keywords: Adhesion strength; High-pressure torsion; Ti-based implants; TiO(2) nanotubes; Ultra-fine-grained materials.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources