Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 20;38(15):1723-1735.
doi: 10.1200/JCO.19.01823. Epub 2020 Feb 14.

Integrating the "Immunome" in the Stratification of Myelodysplastic Syndromes and Future Clinical Trial Design

Affiliations

Integrating the "Immunome" in the Stratification of Myelodysplastic Syndromes and Future Clinical Trial Design

Susann Winter et al. J Clin Oncol. .

Abstract

Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis and often include a dysregulation and dysfunction of the immune system. In the context of population aging, MDS incidence is set to increase substantially, with exponential increases in health care costs, given the limited and expensive treatment options for these patients. Treatment selection is mainly based on calculated risk categories according to a Revised International Prognostic Scoring System (IPSS-R). However, although IPSS-R is an excellent predictor of disease progression, it is an ineffective predictor of response to disease-modifying therapies. Redressing these unmet needs, the "immunome" is a key, multifaceted component in the initiation and overall response against malignant cells in MDS, and the current omission of immune status monitoring may in part explain the insufficiencies of current prognostic stratification methods. Nevertheless, integrating these and other recent molecular advances into clinical practice proves difficult. This review highlights the complexity of immune dysregulation in MDS pathophysiology and the fine balance between smoldering inflammation, adaptive immunity, and somatic mutations in promoting or suppressing malignant clones. We review the existing knowledge and discuss how state-of-the-art immune monitoring strategies could potentially permit novel patient substratification, thereby empowering practical predictions of response to treatment in MDS. We propose novel multicenter studies, which are needed to achieve this goal.

PubMed Disclaimer

Publication types