Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr;43(4):1599-1607.
doi: 10.1007/s10653-020-00533-2. Epub 2020 Feb 14.

Comparative understanding of metal hyperaccumulation in plants: a mini-review

Affiliations
Review

Comparative understanding of metal hyperaccumulation in plants: a mini-review

Jia-Shi Peng et al. Environ Geochem Health. 2021 Apr.

Abstract

Hyperaccumulator plants are ideal models for investigating the regulatory mechanisms of plant metal homeostasis and environmental adaptation due to their notable traits of metal accumulation and tolerance. These traits may benefit either the biofortification of essential mineral nutrients or the phytoremediation of nonessential toxic metals. A common mechanism by which elevated expression of key genes involved in metal transport or chelation contributes to hyperaccumulation and hypertolerance was proposed mainly from studies examining two Brassicaceae hyperaccumulators, namely Arabidopsis halleri and Noccaea caerulescens (formerly Thlaspi caerulescens). Meanwhile, recent findings regarding systems outside the Brassicaceae hyperaccumulators indicated that functional enhancement of key genes might represent a strategy evolved by hyperaccumulator plants. This review provides a brief outline of metal hyperaccumulation in plants and highlights commonalities and differences among various hyperaccumulators.

Keywords: Cell wall; Elevated expression; Functional enhancement; Heavy metal; Hyperaccumulator.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Assunção, A. G. L., da Costa Martins, P., de Folter, S., Voojis, R., Schat, H., & Aarts, M. G. M. (2001). Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment, 24(2), 217–226.
    1. Becher, M., Talke, I. N., Krall, L., & Krämer, U. (2004). Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant Journal, 37(2), 251–268.
    1. Bernard, C., Roosens, N., Czernic, P., Lebrun, M., & Verbruggen, N. (2004). A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Letters, 569(1–3), 140–148.
    1. Chiang, H. C., Lo, J. C., & Yeh, K. C. (2006). Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: A genomic survey with cDNA microarray. Environmental Science and Technology, 40(21), 6792–6798.
    1. Cornu, J. Y., Deinlein, U., Höreth, S., Braun, M., Schmidt, H., Weber, M., et al. (2015). Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. New Phytologist, 206(2), 738–750.

MeSH terms

LinkOut - more resources