Comparative understanding of metal hyperaccumulation in plants: a mini-review
- PMID: 32060864
- DOI: 10.1007/s10653-020-00533-2
Comparative understanding of metal hyperaccumulation in plants: a mini-review
Abstract
Hyperaccumulator plants are ideal models for investigating the regulatory mechanisms of plant metal homeostasis and environmental adaptation due to their notable traits of metal accumulation and tolerance. These traits may benefit either the biofortification of essential mineral nutrients or the phytoremediation of nonessential toxic metals. A common mechanism by which elevated expression of key genes involved in metal transport or chelation contributes to hyperaccumulation and hypertolerance was proposed mainly from studies examining two Brassicaceae hyperaccumulators, namely Arabidopsis halleri and Noccaea caerulescens (formerly Thlaspi caerulescens). Meanwhile, recent findings regarding systems outside the Brassicaceae hyperaccumulators indicated that functional enhancement of key genes might represent a strategy evolved by hyperaccumulator plants. This review provides a brief outline of metal hyperaccumulation in plants and highlights commonalities and differences among various hyperaccumulators.
Keywords: Cell wall; Elevated expression; Functional enhancement; Heavy metal; Hyperaccumulator.
Similar articles
-
Implications of metal accumulation mechanisms to phytoremediation.Environ Sci Pollut Res Int. 2009 Mar;16(2):162-75. doi: 10.1007/s11356-008-0079-z. Epub 2008 Dec 6. Environ Sci Pollut Res Int. 2009. PMID: 19067014 Review.
-
Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance towards Heavy Metals.Int J Mol Sci. 2022 Aug 19;23(16):9335. doi: 10.3390/ijms23169335. Int J Mol Sci. 2022. PMID: 36012598 Free PMC article. Review.
-
Tolerance to cadmium in plants: the special case of hyperaccumulators.Biometals. 2013 Aug;26(4):633-8. doi: 10.1007/s10534-013-9659-6. Epub 2013 Jul 24. Biometals. 2013. PMID: 23881358 Review.
-
Comparative transcriptome analysis of the metal hyperaccumulator Noccaea caerulescens.Front Plant Sci. 2014 May 20;5:213. doi: 10.3389/fpls.2014.00213. eCollection 2014. Front Plant Sci. 2014. PMID: 24904610 Free PMC article. Review.
-
Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants.Metallomics. 2020 Jun 24;12(6):840-859. doi: 10.1039/d0mt00043d. Metallomics. 2020. PMID: 32432639 Review.
Cited by
-
Interaction between Boron and Other Elements in Plants.Genes (Basel). 2023 Jan 3;14(1):130. doi: 10.3390/genes14010130. Genes (Basel). 2023. PMID: 36672871 Free PMC article. Review.
-
Bioaccumulation of the Heavy Metal Cadmium and Its Tolerance Mechanisms in Experimental Plant Suaeda salsa.Int J Mol Sci. 2025 Jul 21;26(14):6988. doi: 10.3390/ijms26146988. Int J Mol Sci. 2025. PMID: 40725235 Free PMC article.
-
Harnessing Endophytic Fungi for Enhancing Growth, Tolerance and Quality of Rose-Scented Geranium (Pelargonium graveolens (L'Hér) Thunb.) Plants under Cadmium Stress: A Biochemical Study.J Fungi (Basel). 2021 Dec 3;7(12):1039. doi: 10.3390/jof7121039. J Fungi (Basel). 2021. PMID: 34947021 Free PMC article.
-
Reducing Heavy Metal Contamination in Soil and Water Using Phytoremediation.Plants (Basel). 2024 Jun 1;13(11):1534. doi: 10.3390/plants13111534. Plants (Basel). 2024. PMID: 38891342 Free PMC article. Review.
-
Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants.Plant Biotechnol J. 2024 Oct;22(10):2641-2659. doi: 10.1111/pbi.14379. Epub 2024 May 31. Plant Biotechnol J. 2024. PMID: 38817148 Free PMC article. Review.
References
-
- Assunção, A. G. L., da Costa Martins, P., de Folter, S., Voojis, R., Schat, H., & Aarts, M. G. M. (2001). Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment, 24(2), 217–226.
-
- Becher, M., Talke, I. N., Krall, L., & Krämer, U. (2004). Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant Journal, 37(2), 251–268.
-
- Bernard, C., Roosens, N., Czernic, P., Lebrun, M., & Verbruggen, N. (2004). A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Letters, 569(1–3), 140–148.
-
- Chiang, H. C., Lo, J. C., & Yeh, K. C. (2006). Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: A genomic survey with cDNA microarray. Environmental Science and Technology, 40(21), 6792–6798.
-
- Cornu, J. Y., Deinlein, U., Höreth, S., Braun, M., Schmidt, H., Weber, M., et al. (2015). Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. New Phytologist, 206(2), 738–750.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources