Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2020 Feb 15;11(2):26-32.
doi: 10.4239/wjd.v11.i2.26.

Weight loss induced by whole grain-rich diet is through a gut microbiota-independent mechanism

Affiliations
Editorial

Weight loss induced by whole grain-rich diet is through a gut microbiota-independent mechanism

Wen-Chi Wu et al. World J Diabetes. .

Abstract

The prevalence of overweight and obesity has increased worldwide. Obesity is a well-known risk factor of type 2 diabetes mellitus and cardiovascular disease and raises public health concerns. Many dietary guidelines encourage the replacement of refined grains with whole grains (WGs) to enhance body weight management. Current evidence regarding interrelationships among WGs, body weight, and gut microbiota is limited and inconclusive. In this editorial, we comment on the article by Roager et al published in the recent issue of the Gut 2019; 68(1): 83-93. In the study, obese patients (25 < body mass index < 35 kg/m2) were randomly assigned to receive two 8-wk dietary controlling periods with WGs and refined grain-rich diet. The results showed significantly decreased body weight in the WG group. Either the composition of gut microbiota or short-chain fatty acids, the leading end product of fermentation of non-digestible carbohydrate by gut microbiota, did not differ between the two groups. The study highly indicated that a WG-rich diet reduced body weight independent of gut microbiota. We then raised some plausible mechanisms of how WGs might influence body weight and demonstrated more literature in line with WGs enhance body weight control through a microbiota-independent pathway. Possible mechanisms include: (1) The abundant dietary fiber contents of WGs increase satiety, satiation, energy excretion from stool, and energy expenditure simultaneously decreasing energy absorption and fat storage; (2) The plentiful amount of polyphenols of WGs improve energy expenditure by hampering adipocyte maturation and function; (3) The sufficient magnesium and zinc of WGs guarantee lean body mass growth and decrease fat mass; (4) The effect of WGs on brown adipose tissue is a key component of non-shivering thermogenesis; and (5) The increase of adiponectin by WGs enhances glucose utilization, lipid oxidation, and energy expenditure.

Keywords: Adiponectin; Brown adipose tissue; Microbiota; Obesity; Short-chain fatty acids; Whole grain.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors have no conflicts of interest to declare.

References

    1. de Munter JS, Hu FB, Spiegelman D, Franz M, van Dam RM. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med. 2007;4:e261. - PMC - PubMed
    1. Office of Disease Prevention and Health Promotion. Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Available from: https://health.gov/dietaryguidelines/2015-scientific-report/
    1. Barrett EM, Batterham MJ, Ray S, Beck EJ. Whole grain, bran and cereal fibre consumption and CVD: a systematic review. Br J Nutr. 2019;121:914–937. - PubMed
    1. Ye EQ, Chacko SA, Chou EL, Kugizaki M, Liu S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr. 2012;142:1304–1313. - PMC - PubMed
    1. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, Tonstad S, Vatten LJ, Riboli E, Norat T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. - PMC - PubMed

Publication types