Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 31;5(5):2440-2457.
doi: 10.1021/acsomega.9b03989. eCollection 2020 Feb 11.

Exploring Possible Surrogates for Kobayashi's Aryne Precursors

Affiliations

Exploring Possible Surrogates for Kobayashi's Aryne Precursors

Ana Carolina A Muraca et al. ACS Omega. .

Abstract

A class of aryne precursors, that is, 2-(trimethylsilyl)aryl 4-chlorobenzenesulfonates, has been developed through well-established synthetic routes, which allow the formation of arynes under relatively mild conditions. All the aryne precursors were obtained from phenols and 4-chlorobenzenesulfonyl chloride, an inexpensive and easy-to-handle reagent with relatively low toxicity, and subjected to nucleophilic addition reactions, providing addition products in yields of 24 to 92%, and to cycloaddition reactions, affording cycloadducts in yields up to 80%. This work provides interesting insights into the mechanisms of aryne generation. In addition, 2-(trimethylsilyl)phenyl 4-chlorobenzenesulfonate was successfully employed in the total synthesis of (±)-aporphine.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Previously Reported Alternatives to Silylaryl Triflates and the Novel Benzyne Precursor Introduced by This Work
Scheme 2
Scheme 2. Synthesis of 2-(Trimethylsilyl)phenyl Benzenesulfonates 7a and 10 and 2-(Trimethylsilyl)phenyl Sulfamate (12)
Scheme 3
Scheme 3. Proposed Mechanisms for the Benzyne Generation Using Compound 7a
Scheme 4
Scheme 4. Preparation of 2-(Trimethylsilyl)aryl 4-Chlorobenzenesulfonates 7b7e
Scheme 5
Scheme 5. Proposed Mechanism for the Formation of 4-Chlorobenzenesulfonates 19a19c
Scheme 6
Scheme 6. Preparation of Alkyl Azides 25a25d and Aryl Azides 26a26d
Scheme 7
Scheme 7. Total Synthesis of Alkaloid (±)-Aporphine (34)

Similar articles

References

    1. For reviews, see:

    2. Takikawa H.; Nishii A.; Sakai T.; Suzuki K. Aryne-Based Strategy in the Total Synthesis of Naturally Occuring Polycyclic Compounds. Chem. Soc. Rev. 2018, 47, 8030–8056. 10.1039/C8CS00350E. - DOI - PubMed
    3. Tadross P. M.; Stoltz B. M. A Comprehensive History of Arynes in Natural Product Total Synthesis. Chem. Rev. 2012, 112, 3550–3577. 10.1021/cr200478h. - DOI - PubMed
    4. Gampe C. M.; Carreira E. M. Arynes and Cyclohexyne in Natural Product Synthesis. Angew. Chem., Int. Ed. 2012, 51, 3766–3778. 10.1002/anie.201107485. - DOI - PubMed
    5. For selected examples, see:

    6. Corsello M. A.; Kim J.; Garg N. K. Total Synthesis of (−)-Tubingensin B Enabled by the Strategic Use of an Aryne Cyclization. Nat. Chem. 2017, 9, 944–949. 10.1038/nchem.2801. - DOI - PMC - PubMed
    7. Muraca A. C. A.; Perecim G. P.; Rodrigues A.; Raminelli C. Convergent Total Synthesis of (±)-Apomorphine via Benzyne Chemistry: Insights into the Mechanisms Involved in the Key Step. Synthesis 2017, 49, 3546–3557. 10.1055/s-0036-1588855. - DOI
    8. Gouthami P.; Chegondi R.; Chandrasekhar S. Formal Total Synthesis of (±)-Cephalotaxine and Congeners via Aryne Insertion Reaction. Org. Lett. 2016, 18, 2044–2046. 10.1021/acs.orglett.6b00659. - DOI - PubMed
    9. Rossini A. F. C.; Muraca A. C. A.; Casagrande G. A.; Raminelli C. Total Syntheses of Aporphine Alkaloids via Benzyne Chemistry: An Approach to the Formation of Aporphine Cores. J. Org. Chem. 2015, 80, 10033–10040. 10.1021/acs.joc.5b01634. - DOI - PubMed
    10. Allan K. M.; Stoltz B. M. A Concise Total Synthesis of (−)-Quinocarcin via Aryne Annulation. J. Am. Chem. Soc. 2008, 130, 17270–17271. 10.1021/ja808112y. - DOI - PubMed
    1. For reviews, see:

    2. Pozo I.; Guitián E.; Pérez D.; Peña D. Synthesis of Nanographenes, Starphenes, and Sterically Congested Polyarenes by Aryne Cyclotrimerization. Acc. Chem. Res. 2019, 52, 2472–2481. 10.1021/acs.accounts.9b00269. - DOI - PubMed
    3. Roy T.; Biju A. T. Recent Advances in Molecular Rearrangements Involving Aryne Intermediates. Chem. Commun. 2018, 54, 2580–2594. 10.1039/C7CC09122B. - DOI - PubMed
    4. Shi J.; Li Y.; Li Y. Aryne Multifunctionalization with Benzdiyne and Benztriyne Equivalents. Chem. Soc. Rev. 2017, 46, 1707–1719. 10.1039/C6CS00694A. - DOI - PubMed
    5. García-López J.-A.; Greaney M. F. Synthesis of Biaryls Using Aryne Intermediates. Chem. Soc. Rev. 2016, 45, 6766–6798. 10.1039/C6CS00220J. - DOI - PubMed
    6. Wu D.; Ge H.; Liu S. H.; Yin J. Arynes in the Synthesis of Polycyclic Aromatic Hydrocarbons. RSC Adv. 2013, 3, 22727–22738. 10.1039/c3ra43804j. - DOI
    7. Pérez D.; Peña D.; Guitián E. Aryne Cycloaddition Reactions in the Synthesis of Large Polycyclic Aromatic Compounds. Eur. J. Org. Chem. 2013, 5981–6013. 10.1002/ejoc.201300470. - DOI
    8. For selected examples, see:

    9. Mizukoshi Y.; Mikami K.; Uchiyama M. Aryne Polymerization Enabling Straightforward Synthesis of Elusive Poly(ortho-arylene)s. J. Am. Chem. Soc. 2015, 137, 74–77. 10.1021/ja5112207. - DOI - PubMed
    10. Li J.; Zhao Y.; Lu J.; Li G.; Zhang J.; Zhao Y.; Sun X.; Zhang Q. Double [4 + 2] Cycloaddition Reaction To Approach a Large Acene with Even-Number Linearly Fused Benzene Rings: 6,9,16,19-Tetraphenyl-1.20,4.5,10.11,14.15-Tetrabenzooctatwista-cene. J. Org. Chem. 2015, 80, 109–113. 10.1021/jo5021163. - DOI - PubMed
    11. Shen Y.-M.; Grampp G.; Leesakul N.; Hu H.-W.; Xu J.-H. Synthesis and Emitting Properties of the Blue-Light Fluorophores Indolizino[3,4,5-ab]isoindole Derivatives. Eur. J. Org. Chem. 2007, 3718–3726. 10.1002/ejoc.200700250. - DOI
    12. Chen Y.-L.; Wong M.-S.; Wong W.-Y.; Lee A. W. M. Synthesis and Characterization of Oxadisilole Fused Benzo[b]triphenylene. Tetrahedron Lett. 2007, 48, 2421–2425. 10.1016/j.tetlet.2007.01.174. - DOI
    1. For reviews, see:

    2. Yoshimura A.; Saito A.; Zhdankin V. V. Iodonium Salts as Benzyne Precursors. Chem. – Eur. J. 2018, 24, 15156–15166. 10.1002/chem.201802111. - DOI - PubMed
    3. Yoshida S.; Hosoya T. The Renaissance and Bright Future of Synthetic Aryne Chemistry. Chem. Lett. 2015, 44, 1450–1460. 10.1246/cl.150839. - DOI
    4. Bhunia A.; Yetra S. R.; Biju A. T. Recent Advances in Transition-Metal-Free Carbon–Carbon and Carbon–Heteroatom Bond-Forming Reactions Using Arynes. Chem. Soc. Rev. 2012, 41, 3140–3152. 10.1039/c2cs15310f. - DOI - PubMed
    5. Kitamura T. Synthetic Methods for the Generation and Preparative Application of Benzyne. Aust. J. Chem. 2010, 63, 987–1001. 10.1071/CH10072. - DOI
    6. Dyke A. M.; Hester A. J.; Lloyd-Jones G. C. Organometallic Generation and Capture of ortho-Arynes. Synthesis 2006, 4093–4112. 10.1055/s-2006-950370. - DOI
    7. Pellissier H.; Santelli M. The Use of Arynes in Organic Synthesis. Tetrahedron 2003, 59, 701–730. 10.1016/S0040-4020(02)01563-6. - DOI
    8. For selected examples, see:

    9. Matsumoto T.; Hosoya T.; Katsuki M.; Suzuki K. New Efficient Protocol for Aryne Generation. Selective Synthesis of Differentially Protected 1,4,5-Naphthalenetriols. Tetrahedron Lett. 1991, 32, 6735–6736. 10.1016/S0040-4039(00)93589-5. - DOI
    10. Campbell C. D.; Rees C. W. Reactive Intermediates. Part II. Some Addition Reactions of Benzyne. J. Chem. Soc. C. 1969, 748–751. 10.1039/j39690000748. - DOI
    11. Stiles M.; Miller R. G.; Burckhardt U. Reactions of Benzyne Intermediates in Non-basic Media. J. Am. Chem. Soc. 1963, 85, 1792–1797. 10.1021/ja00895a022. - DOI
    12. Le Goff E. Aprotic Generation of Benzyne from Diphenyliodonium-2-Carboxylate. J. Am. Chem. Soc. 1962, 84, 3786.10.1021/ja00878a050. - DOI
    13. Wittig G.; Knauss E. Dehydrobenzol und Cyclopentadien. Chem. Ber. 1958, 91, 895–907. 10.1002/cber.19580910502. - DOI
    1. Himeshima Y.; Sonoda T.; Kobayashi H. Fluoride-induced 1,2-Elimination of o-Trimethylsilylphenyl Triflate to Benzyne under Mild Conditions. Chem. Lett. 1983, 12, 1211–1214. 10.1246/cl.1983.1211. - DOI
    1. For reviews, see:

    2. Dubrovskiy A. V.; Markina N. A.; Larock R. C. Use of Benzynes for the Synthesis of Heterocycles. Org. Biomol. Chem. 2013, 11, 191–218. 10.1039/C2OB26673C. - DOI - PubMed
    3. Yoshida H.; Takaki K. Aryne Insertion Reactions into Carbon–Carbon σ-Bonds. Synlett 2012, 23, 1725–1732. 10.1055/s-0031-1290401. - DOI
    4. Yoshida H.; Ohshita J.; Kunai A. Aryne, ortho-Quinone Methide, and ortho-Quinodimethane: Synthesis of Multisubstituted Arenes Using the Aromatic Reactive Intermediates. Bull. Chem. Soc. Jpn. 2010, 83, 199–219. 10.1246/bcsj.20090245. - DOI

LinkOut - more resources