Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 6;22(5):1813-1817.
doi: 10.1021/acs.orglett.0c00138. Epub 2020 Feb 17.

Asymmetric Synthesis of [2.2.2]-Bicyclic Lactones via All-Carbon Inverse-Electron-Demand Diels-Alder Reaction

Affiliations

Asymmetric Synthesis of [2.2.2]-Bicyclic Lactones via All-Carbon Inverse-Electron-Demand Diels-Alder Reaction

Maciej Saktura et al. Org Lett. .

Abstract

In this paper, a new cycloaddition between α,β-unsaturated aldehydes and coumalates realized under dienamine activation has been described. The reaction proceeds regioselectively with the distal double bond of the dienamine system acting as electron-rich dienophile. It leads to the formation of biologically relevant [2.2.2]-bicyclic lactones. Their functionalization potential has been confirmed in selected, diastereoselective transformations.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Importance of [2.2.2]-bicyclic lactones
Scheme 1
Scheme 1. Importance of Coumalates and Dienamine Activation and the Synthetic Objectives of Our Study
Scheme 2
Scheme 2. Asymmetric Synthesis of [2.2.2]-Bicyclic Lactones 6: Pyrone 1 Scope
All reactions were performed in a 0.1 mmol scale using 1a (1.5 equiv) and 2 (1.0 equiv) in 0.4 mL of diethyl ether (for details, see the Supporting Information). Isolated yields are given. In parentheses, isolated yields of the major diastereoisomer are given; dr was determined by 1H NMR of the crude reaction mixture; er was determined by chiral HPLC analysis for 6. Reaction performed for 48 h reaction time. Reaction performed for 72 h.
Scheme 3
Scheme 3. Diastereoselective Transformations of [2.2.2]-Bicyclic Lactone 4 or 6
Scheme 4
Scheme 4. Asymmetric Synthesis of [2.2.2]-Bicyclic Lactones 4: Mechanistic Considerations

Similar articles

Cited by

References

    1. Büchi G.; Erickson R. E.; Wakabayashi N. J. Am. Chem. Soc. 1961, 83, 927.10.1021/ja01465a042. - DOI
    2. Wolff G.; Ourisson G. Tetrahedron 1969, 25, 4903.10.1016/S0040-4020(01)83031-3. - DOI
    3. Terhune S. J.; Hogg J. W.; Lawrence B. M. Tetrahedron Lett. 1973, 14, 4705.10.1016/S0040-4039(01)87315-9. - DOI
    4. Dunn A. W.; Johnstone R. A. W.; Sklarz B.; King T. J. J. Chem. Soc., Chem. Commun. 1976, 270a.10.1039/c3976000270a. - DOI
    5. Dunn A. W.; Johnstone R. A. W.; Sklarz B.; Lessinger L.; King T. J. J. Chem. Soc., Chem. Commun. 1978, 533.10.1039/c39780000533. - DOI
    6. Kobayashi J.; Ueno S.; Morita H. J. Org. Chem. 2002, 67, 6546.10.1021/jo0258204. - DOI - PubMed
    7. Morita H.; Ishioka N.; Takatsu H.; Iizuka T.; Kobayashi J. J. Nat. Prod. 2006, 69, 418.10.1021/np0503799. - DOI - PubMed
    8. Hao X.; Shen Y.; Li L.; He H. Curr. Med. Chem. 2003, 10, 2253.10.2174/0929867033456684. - DOI - PubMed
    9. Li S.-H.; Wang J.; Niu X.-M.; Shen J.-H.; Zhang H.-J.; Sun H.-D.; Li M.-L.; Tian Q.-E.; Lu Y.; Cao P.; Zheng Q.-T. Org. Lett. 2004, 6, 4327.10.1021/ol0481535. - DOI - PubMed
    10. Rakotonandrasana O. L.; Raharinjato F. H.; Rajaonarivelo M.; Dumontet V.; Martin M.-T.; Bignon J.; Rasoanaivo P. J. Nat. Prod. 2010, 73, 1730.10.1021/np1005086. - DOI - PubMed
    11. Moustafa G. A. I.; Nojima S.; Yamano Y.; Aono A.; Arai M.; Mitarai S.; Tanaka T.; Yoshimitsu T. MedChemComm 2013, 4, 720.10.1039/c3md00016h. - DOI
    1. Cai X.-H.; Tan Q.-G.; Liu Y.-P.; Feng T.; Du Z.-Z.; Li W.-Q.; Luo X.-D. Org. Lett. 2008, 10, 577.10.1021/ol702682h. - DOI - PubMed
    2. Asakawa Y.; Toyota M.; Taira Z.; Takemoto T.; Kido M.; Ichikawa Y. J. Chem. Soc., Chem. Commun. 1980, 1232.10.1039/C39800001232. - DOI
    3. Nakashima K.; Kawano H.; Kumano M.; Kodama H.; Kameoka M.; Yamamoto A.; Mizutani R.; Sono M.; Tori M. Tetrahedron Lett. 2015, 56, 4912.10.1016/j.tetlet.2015.06.083. - DOI
    4. Du J.; Chiu M.-H.; Nie R.-L. J. Nat. Prod. 1999, 62, 1664.10.1021/np9900270. - DOI
    5. Buta J. G.; Flippen J. L.; Lusby W. R. J. Org. Chem. 1978, 43, 1002.10.1021/jo00399a047. - DOI
    6. Evanno L.; Jossang A.; Nguyen-Pouplin J.; Delaroche D.; Herson P.; Seuleiman M.; Bodo B.; Nay B. Planta Med. 2008, 74, 870.10.1055/s-2008-1074546. - DOI - PubMed
    7. Xiong L.; Zhou Q.-M.; Zou Y.; Chen M.-H.; Guo L.; Hu G.-Y.; Liu Z.-H.; Peng C. Org. Lett. 2015, 17, 6238.10.1021/acs.orglett.5b03227. - DOI - PubMed
    1. Smith M. W.; Snyder S. A. J. Am. Chem. Soc. 2013, 135, 12964.10.1021/ja406546k. - DOI - PubMed
    2. Afarinkia K.; Mahmood F. Tetrahedron 1999, 55, 3129.10.1016/S0040-4020(99)00071-X. - DOI
    3. Feng M.; Jiang X. Chem. Commun. 2014, 50, 9690.10.1039/C4CC04148H. - DOI - PubMed
    1. Konkel M. J.; Vince V. Tetrahedron 1996, 52, 799.10.1016/0040-4020(95)00926-4. - DOI
    2. Trotter N. S.; Larsen D. S.; Stoodley R. J.; Brooker S. Tetrahedron Lett. 2000, 41, 8957.10.1016/S0040-4039(00)01589-6. - DOI
    3. Nicolaou K. C.; Snyder S. A.; Montagnon T.; Vassilikogiannakis G. Angew. Chem., Int. Ed. 2002, 41, 1668.10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z. - DOI - PubMed
    4. Larsen D. S.; Lins R. J.; Stoodley R. J.; Trotter N. S. Org. Biomol. Chem. 2004, 2, 1934.10.1039/b404688a. - DOI - PubMed
    5. Abdelkafi H.; Herson P.; Nay B. Org. Lett. 2012, 14, 1270.10.1021/ol300133x. - DOI - PubMed
    6. Grant P. S.; Brimble M. A.; Furkert D. P. Chem. - Asian J. 2019, 14, 1128.10.1002/asia.201800903. - DOI - PubMed
    1. Posner G. H.; Carry J. K.; Lee J. K.; Bull D. S.; Dai S. Tetrahedron Lett. 1994, 35, 1321.10.1016/S0040-4039(00)76207-1. - DOI
    2. Wang Y.; Li H.; Wang Y.-Q.; Liu Y.; Foxman B. M.; Deng L. J. Am. Chem. Soc. 2007, 129, 6364.10.1021/ja070859h. - DOI - PMC - PubMed
    3. Singh R. P.; Bartelson K.; Wang Y.; Su H.; Lu X.; Deng L. J. Am. Chem. Soc. 2008, 130, 2422.10.1021/ja078251w. - DOI - PubMed
    4. Zheng S.; Lu X. Org. Lett. 2009, 11, 3978.10.1021/ol901618h. - DOI - PubMed
    5. Gutekunst W. R.; Baran P. S. J. Am. Chem. Soc. 2011, 133, 19076.10.1021/ja209205x. - DOI - PMC - PubMed
    6. Gutekunst W. R.; Gianatassio R.; Baran P. S. Angew. Chem. 2012, 124, 7625.10.1002/ange.201203897. - DOI - PMC - PubMed
    7. She N.; Zhuo L.; Jiang W.; Zhu X.; Wang J.; Ming Z.; Zhao X.; Cong X.; Huang W. Bioorg. Med. Chem. Lett. 2014, 24, 3351.10.1016/j.bmcl.2014.05.097. - DOI - PubMed
    8. Liu K.; Teng H.-L.; Wang C.-J. Org. Lett. 2014, 16, 4508.10.1021/ol5020569. - DOI - PubMed
    9. Gordon J. R.; Nelson H. M.; Virgil S. C.; Stoltz B. M. J. Org. Chem. 2014, 79, 9740.10.1021/jo501924u. - DOI - PubMed
    10. Shi L.-M.; Dong W.-W.; Tao H.-Y.; Dong X.-Q.; Wang C.-J. Org. Lett. 2017, 19, 4532.10.1021/acs.orglett.7b02107. - DOI - PubMed
    11. Zhou Y.; Zhou Z.; Du W.; Chen Y.-C. Huaxue Xuebao 2018, 76, 382.10.6023/A18040131. - DOI
    12. Liu Q.; Zu L. Angew. Chem., Int. Ed. 2018, 57, 9505.10.1002/anie.201805019. - DOI - PubMed
    13. Pfennig T.; Chemburkar A.; Johnson R. L.; Ryan M. J.; Rossini A. J.; Neurock M.; Shanks B. H. ACS Catal. 2018, 8, 2450.10.1021/acscatal.7b04311. - DOI
    14. Giardinetti M.; Jessen N. I.; Christensen M. L.; Jørgensen K. A. Chem. Commun. 2019, 55, 202.10.1039/C8CC08551J. - DOI - PubMed

Publication types