Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov;35(22):4814-4818.
doi: 10.1080/14786419.2020.1727471. Epub 2020 Feb 18.

Isoquinoline alkaloids reduce beta-amyloid peptide toxicity in Caenorhabditis elegans

Affiliations

Isoquinoline alkaloids reduce beta-amyloid peptide toxicity in Caenorhabditis elegans

Wamberto Alristenio Moreira de Almeida et al. Nat Prod Res. 2021 Nov.

Abstract

Alzheimer's disease (AD) is a multifactorial health problem widespread over the world. Regarding the historical importance of the alkaloids in the central nervous system pharmacology they remain as promising drug candidates against AD. Seven alkaloids from Amaryllidaceae and Fabaceae were evaluated in vivo, in vitro and in silico targets related to the AD pathophysiology. Erythraline and erysodine showed the greatest potential compared to Memantine, a drug currently used in AD therapy, by delaying the Aβ1-42-induced paralysis in the transgenic strain CL2006 Caenorhabditis elegans, an alternative model to assess the impairment of beta-amyloid peptide deposition. The in vitro inhibition of the acetylcholinesterase was observed for the first time for Erythrina alkaloids; however Lycorine was the most active. Docking simulation contributed to comprehend this potential by showing a hydrophobic interaction between acetylcholinesterase and Lycorine in the amino acid residue TRP 84 as well as hydrogen bonds with TRY 121 and ASP 72.

Keywords: Alzheimer; Erythrina; Hippeastrum.

PubMed Disclaimer

LinkOut - more resources