Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May:247:125882.
doi: 10.1016/j.chemosphere.2020.125882. Epub 2020 Jan 16.

Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite

Affiliations

Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite

Hossein Molavi et al. Chemosphere. 2020 May.

Abstract

In this research, UiO-66 and its composite nanoparticles with thermally oxidized nanodiamond (OND) were synthesized via a simple solvothermal method and utilized as solid adsorbent for the removal of anionic methyl red (MR) dye and cationic malachite green (MG) dye from contaminated water. The synthesized adsorbents were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), N2 adsorption-desorption, and zeta potential analyzer. The influences of various factors such as initial concentrations of the dyes, adsorption process time, solution pH, solution temperature and ionic strength on adsorption behavior of MR dye onto OND-UiO hybrid nanoparticle were investigated. The adsorption of MR onto OND-UiO hybrid nanoparticle could be well described by Langmuir isotherm model. Meanwhile, pseudo-second order kinetic model was found to be suitable for illustration of adsorption kinetics of MR onto OND-UiO. Thermodynamic investigation suggested that the adsorption process was spontaneous and endothermic, and controlled by an entropy change instead of enthalpy effect. The experimental adsorption results indicated that OND-UiO hybrid nanoparticle could simultaneously adsorb 59% of MR and 43% of MG from the mixture of both dyes in only 2 min showing synergistic effect compared with single UiO-66 and OND nanoparticles in terms of adsorption rate and removal capacity of anionic dyes. The appropriate removal efficiency, rapid adsorption kinetic, high water stability, and good reusability make OND-UiO hybrid nanoparticle attractive candidate for simultaneously removal of both anionic MR and cationic MG dyes from wastewater.

Keywords: Composite nanoparticle; Dye removal; Metal-organic framework; Nanodiamond; UiO-66.

PubMed Disclaimer

LinkOut - more resources