Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May;27(13):14441-14453.
doi: 10.1007/s11356-020-07959-2. Epub 2020 Feb 18.

Floating bed reactor for visible light induced photocatalytic degradation of Acid Yellow 17 using polyaniline-TiO2 nanocomposites immobilized on polystyrene cubes

Affiliations

Floating bed reactor for visible light induced photocatalytic degradation of Acid Yellow 17 using polyaniline-TiO2 nanocomposites immobilized on polystyrene cubes

Veni Ramachandran Nair et al. Environ Sci Pollut Res Int. 2020 May.

Abstract

In the present study, PANI-TiO2 nanocomposites have been used in suspended and immobilized form for photocatalytic degradation of Acid Yellow 17 (AY-17) dye under visible light. PANI-TiO2 nanocomposites were immobilized in polystyrene cubes to form PANI-TiO2 @ polystyrene cubes. The nanocomposites were found to be visible light active both in suspended and immobilized form. PANI-TiO2 nanocomposite with 13% TiO2 loading was found to be the optimum in terms of maximum degradation of AY-17. The efficiency of floating bed photoreactor (FBR) operated in liquid recycle mode using PANI-TiO2 @ polystyrene cubes was studied. In this reactor, around 89% degradation of 1 L of AY-17 with an initial concentration of 10 mg/L could be achieved with 2.83 g/L per pass of immobilized catalyst. The FBR operated with PANI-TiO2 @ polystyrene cubes has exhibited good performance as a photocatalytic reactor and may be recommended over other conventional photo reactors for treatment of wastewater contaminated with synthetic dyes. The kinetics of degradation of AY-17 by photocatalysis under visible light with suspended PANI-TiO2 and PANI-TiO2 @ polystyrene cubes followed first-order kinetics. The values of apparent kinetic parameter for degradation by immobilized photocatalysts are lower than the corresponding kinetic parameter for suspended photocatalysts. It confirms the existence of diffusional limitations in photocatalysis by PANI-TiO2 @polystyrene cubes.

Keywords: Dyes; Floating bed reactor; Immobilized photocatalysts; PANI-TiO2, photocatalysis; Polystyrene.

PubMed Disclaimer

LinkOut - more resources