A checklist for choosing between R packages in ecology and evolution
- PMID: 32076500
- PMCID: PMC7029065
- DOI: 10.1002/ece3.5970
A checklist for choosing between R packages in ecology and evolution
Abstract
The open source and free programming language R is a phenomenal mechanism to address a multiplicity of challenges in ecology and evolution. It is also a complex ecosystem because of the diversity of solutions available to the analyst.Packages for R enhance and specialize the capacity to explore both niche data/experiments and more common needs. However, the paradox of choice or how we select between many seemingly similar options can be overwhelming and lead to different potential outcomes.There is extensive choice in ecology and evolution between packages for both fundamental statistics and for more specialized domain-level analyses.Here, we provide a checklist to inform these decisions based on the principles of resilience, need, and integration with scientific workflows for evidence.It is important to explore choices in any analytical coding environment-not just R-for solutions to challenges in ecology and evolution, and document this process because it advances reproducible science, promotes a deeper understand of the scientific evidence, and ensures that the outcomes are correct, representative, and robust.
Keywords: R programming language; checklist; guidelines; heuristic; open source; paradox of choice; reproducible science; statistical methods; tools.
© 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Conflict of interest statement
None declared.
Figures

Similar articles
-
A contrast of meta and metafor packages for meta-analyses in R.Ecol Evol. 2020 Sep 14;10(20):10916-10921. doi: 10.1002/ece3.6747. eCollection 2020 Oct. Ecol Evol. 2020. PMID: 33144936 Free PMC article.
-
rWCVP: a companion R package for the World Checklist of Vascular Plants.New Phytol. 2023 Nov;240(4):1355-1365. doi: 10.1111/nph.18919. Epub 2023 May 11. New Phytol. 2023. PMID: 37289204
-
MoveApps: a serverless no-code analysis platform for animal tracking data.Mov Ecol. 2022 Jul 18;10(1):30. doi: 10.1186/s40462-022-00327-4. Mov Ecol. 2022. PMID: 35843990 Free PMC article.
-
Risk management frameworks for human health and environmental risks.J Toxicol Environ Health B Crit Rev. 2003 Nov-Dec;6(6):569-720. doi: 10.1080/10937400390208608. J Toxicol Environ Health B Crit Rev. 2003. PMID: 14698953 Review.
-
A checklist for maximizing reproducibility of ecological niche models.Nat Ecol Evol. 2019 Oct;3(10):1382-1395. doi: 10.1038/s41559-019-0972-5. Epub 2019 Sep 23. Nat Ecol Evol. 2019. PMID: 31548646 Review.
Cited by
-
Online but not remote: Adapting field-based ecology laboratories for online learning.Ecol Evol. 2020 Nov 21;11(8):3616-3624. doi: 10.1002/ece3.7008. eCollection 2021 Apr. Ecol Evol. 2020. PMID: 33898014 Free PMC article.
-
A contrast of meta and metafor packages for meta-analyses in R.Ecol Evol. 2020 Sep 14;10(20):10916-10921. doi: 10.1002/ece3.6747. eCollection 2020 Oct. Ecol Evol. 2020. PMID: 33144936 Free PMC article.
-
Diversity and seasonal abundance of Culicoides (Diptera, Ceratopogonidae) in Shizong County, Yunnan Province, China.Parasite. 2022;29:26. doi: 10.1051/parasite/2022027. Epub 2022 May 11. Parasite. 2022. PMID: 35543529 Free PMC article.
-
A serologic investigation of epizootic hemorrhagic disease virus in China between 2014 and 2019.Virol Sin. 2022 Aug;37(4):513-520. doi: 10.1016/j.virs.2022.06.005. Epub 2022 Jun 17. Virol Sin. 2022. PMID: 35718300 Free PMC article.
References
-
- Berkeley, D. , & Humphreys, P. (1982). Structuring decision problems and the ‘bias heuristic’. Acta Psychologica, 50, 201–252. 10.1016/0001-6918(82)90042-7 - DOI
-
- Cadotte, M. W. , Mehrkens, L. R. , & Menge, D. N. L. (2012). Gauging the impact of meta‐analysis on ecology. Evolutionary Ecology, 26, 1153–1167. 10.1007/s10682-012-9585-z - DOI
-
- Colapinto, C. , Jayaraman, R. , & Marsiglio, S. (2017). Multi‐criteria decision analysis with goal programming in engineering, management and social sciences: A state‐of‐the art review. Annals of Operations Research, 251, 7–40. 10.1007/s10479-015-1829-1 - DOI
LinkOut - more resources
Full Text Sources