An ATP-dependent Na+/Mg2+ countertransport is the only mechanism for Mg extrusion in squid axons
- PMID: 3207756
- DOI: 10.1016/0005-2736(88)90418-x
An ATP-dependent Na+/Mg2+ countertransport is the only mechanism for Mg extrusion in squid axons
Abstract
The components of magnesium efflux in squid axons have been studied under internal dialysis and voltage clamp conditions. The present report rules out the existence of an ATP-dependent, Nao- and Mgo-independent Mg2+ efflux (ATP-dependent Mg2+ pump) leaving the Mg2+-Na+ exchange system as the only mechanism for Mg2+ extrusion. The main features of the Mg2+ efflux are: (1) The efflux is completely dependent on ATP. (2) The efflux can be activated either by external Na+ (forward Mg2+-Na+ exchange) or external Mg2+ (Mg2+-Mg2+ exchange). (3) The mobility of the Mg2+ exchanger in the Na+o-loaded form is greater than that in the Mg2+-loaded one. (4) In variance with the Na+-Ca2+ exchange mechanism, Mg2+-Mg2+ exchange is not activated by external monovalent cations. (5) ATP gamma S replaces ATP in activating Mg2+-Na+ exchange suggesting that a phosphorylation/dephosphorylation process regulates this transport mechanism.
Similar articles
-
In squid axons, ATP modulates Na+-Ca2+ exchange by a Ca2+i-dependent phosphorylation.Biochim Biophys Acta. 1987 Mar 12;897(3):347-54. doi: 10.1016/0005-2736(87)90432-9. Biochim Biophys Acta. 1987. PMID: 3814592
-
An ATP-dependent sodium-sodium exchange in strophanthidin poisoned dialysed squid giant axons.J Physiol. 1981 Jun;315:447-60. doi: 10.1113/jphysiol.1981.sp013757. J Physiol. 1981. PMID: 7310719 Free PMC article.
-
In squid axons intracellular Mg2+ is essential for ATP-dependent Na+ efflux in the absence and presence of strophanthidin.Biochim Biophys Acta. 1983 Mar 9;728(3):463-6. doi: 10.1016/0005-2736(83)90520-5. Biochim Biophys Acta. 1983. PMID: 6402014
-
Mechanisms, regulation and pathologic significance of Mg2+ efflux from erythrocytes.Magnes Res. 2006 Sep;19(3):190-8. Magnes Res. 2006. PMID: 17172009 Review.
-
Plasmalemmal transport of magnesium in excitable cells.Front Biosci. 2000 Sep 1;5:D866-79. doi: 10.2741/rasgado. Front Biosci. 2000. PMID: 10966876 Review.
Cited by
-
Intracellular-free magnesium in the smooth muscle of guinea pig taenia caeci: a concomitant analysis for magnesium and pH upon sodium removal.J Gen Physiol. 1994 May;103(5):833-51. doi: 10.1085/jgp.103.5.833. J Gen Physiol. 1994. PMID: 8035164 Free PMC article.
-
Cellular magnesium homeostasis.Arch Biochem Biophys. 2011 Aug 1;512(1):1-23. doi: 10.1016/j.abb.2011.05.010. Epub 2011 May 27. Arch Biochem Biophys. 2011. PMID: 21640700 Free PMC article. Review.
-
Sodium-magnesium antiport in Retzius neurones of the leech Hirudo medicinalis.J Physiol. 1996 Mar 15;491 ( Pt 3)(Pt 3):595-608. doi: 10.1113/jphysiol.1996.sp021242. J Physiol. 1996. PMID: 8815196 Free PMC article.
-
Sodium-dependent magnesium uptake by ferret red cells.J Physiol. 1991 Nov;443:217-30. doi: 10.1113/jphysiol.1991.sp018831. J Physiol. 1991. PMID: 1822527 Free PMC article.
-
Gastrointestinal transport of Ca2+ and Mg2+ during the digestion of a single meal in the freshwater rainbow trout.J Comp Physiol B. 2007 Apr;177(3):349-60. doi: 10.1007/s00360-006-0134-3. Epub 2007 Jan 9. J Comp Physiol B. 2007. PMID: 17211667
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous