Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 22:1103:156-163.
doi: 10.1016/j.aca.2019.12.056. Epub 2019 Dec 20.

Responsive nanosensor for ratiometric luminescence detection of hydrogen sulfide in inflammatory cancer cells

Affiliations

Responsive nanosensor for ratiometric luminescence detection of hydrogen sulfide in inflammatory cancer cells

Jianping Liu et al. Anal Chim Acta. .

Abstract

Gasotransmitter hydrogen sulfide (H2S), produced enzymatically in body, has important functions in biological signaling and metabolic processes. An abnormal level of H2S expression is associated with different diseases, therefore, development of novel bioanalytical methods for rapid and effective detection of H2S in biological conditions is of great importance. In this work, we report the development of a new responsive nanosensor for ratiometric luminescence detection of H2S in aqueous solution and live cells. The nanosensor (Ru@FITC-MSN) was prepared by immobilizing a luminescent ruthenium(II) (Ru(II)) complex into a fluorescein isothiocyanate (FITC) conjugated water-dispersible mesoporous silica nanoparticle (MSN), showing dual emission bands at 520 nm (FITC) and 600 nm (Ru complex). The red luminescence of the formed Ru@FITC-MSN was quenched in the presence of Cu2+. The in-situ generated Ru-Cu@FITC-MSN responded to H2S rapidly and selectively, showing a linear ratiometric luminescence change in FITC and Ru(II) channels with the H2S concentration (0.5-4 μM). Limit of detection (LoD) and limit of quantification (LoQ) were determined to be 0.36 and 1.21 μM. Followed by investigation of cellular uptake processes, the utility of the nanosensor for ratiometric imaging of H2S in live cells and its capability to monitor H2S levels in inflammatory breast cancer cells were then demonstrated. This study provides a powerful approach for detection of highly reactive and unstable H2S biomolecules in live systems.

Keywords: Hydrogen sulfide detection; Inflammatory cancer cells; Mesoporous silica nanoparticle; Ratiometric luminescence; Responsive nanosensor.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources