Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Feb 18;21(4):1388.
doi: 10.3390/ijms21041388.

Role of VEGFs/VEGFR-1 Signaling and its Inhibition in Modulating Tumor Invasion: Experimental Evidence in Different Metastatic Cancer Models

Affiliations
Review

Role of VEGFs/VEGFR-1 Signaling and its Inhibition in Modulating Tumor Invasion: Experimental Evidence in Different Metastatic Cancer Models

Claudia Ceci et al. Int J Mol Sci. .

Abstract

The vascular endothelial growth factor (VEGF) family members, VEGF-A, placenta growth factor (PlGF), and to a lesser extent VEGF-B, play an essential role in tumor-associated angiogenesis, tissue infiltration, and metastasis formation. Although VEGF-A can activate both VEGFR-1 and VEGFR-2 membrane receptors, PlGF and VEGF-B exclusively interact with VEGFR-1. Differently from VEGFR-2, which is involved both in physiological and pathological angiogenesis, in the adult VEGFR-1 is required only for pathological angiogenesis. Besides this role in tumor endothelium, ligand-mediated stimulation of VEGFR-1 expressed in tumor cells may directly induce cell chemotaxis and extracellular matrix invasion. Furthermore, VEGFR-1 activation in myeloid progenitors and tumor-associated macrophages favors cancer immune escape through the release of immunosuppressive cytokines. These properties have prompted a number of preclinical and clinical studies to analyze VEGFR-1 involvement in the metastatic process. The aim of the present review is to highlight the contribution of VEGFs/VEGFR-1 signaling in the progression of different tumor types and to provide an overview of the therapeutic approaches targeting VEGFR-1 currently under investigation.

Keywords: Flt-1; PlGF; VEGF-A; VEGFR-1; angiogenesis; cancer; immune escape; melanoma; metastasis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
VEGF family members and their receptors. VEGF-A proangiogenic signaling is mediated via interaction with VEGFR-2 or VEGFR-1. The soluble VEGFR-1 form (sVEGFR-1) functions as a decoy receptor, preventing membrane receptor activation. VEGF-B and PlGF only bind to VEGFR-1, playing a key role in pathological angiogenesis and inflammation. Furthermore, VEGFR-1 activation contributes to the recruitment of tumor-associated macrophages (TAMs) and cancer immune escape. VEGFR-1 and VEGFR-2 activation in tumor cells directly stimulates migration and extracellular matrix (ECM) invasion. VEGF-C and VEGF-D mainly activate VEGFR-3, which is required for developmental and pathological lymphangiogenesis. The VEGF-E, a selective VEGFR-2 ligand, and VEGF-F, a VEGFR-1 and VEGFR-2 ligand, have been omitted from the drawing; VEGF-E is a VEGF homolog of viral origin and VEGF-F is a snake venom VEGF.

References

    1. Siveen K.S., Prabhu K., Krishnankutty R., Kuttikrishnan S., Tsakou M., Alali F.Q., Dermime S., Mohammad R.M., Uddin S. Vascular Endothelial Growth Factor (VEGF) Signaling in Tumour Vascularization: Potential and Challenges. Curr. Vasc. Pharmacol. 2017;15:339–351. doi: 10.2174/1570161115666170105124038. - DOI - PubMed
    1. Karaman S., Leppänen V.M., Alitalo K. Vascular endothelial growth factor signaling in development and diseas. Development. 2018;145:151019. doi: 10.1242/dev.151019. - DOI - PubMed
    1. De Aguiar R.B., De Moraes J.Z. Exploring the Immunological Mechanisms Underlying the Anti-vascular Endothelial Growth Factor Activity in Tumors. Front. Immunol. 2019;10:1023. doi: 10.3389/fimmu.2019.01023. - DOI - PMC - PubMed
    1. Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist. 2004;9:2–10. doi: 10.1634/theoncologist.9-suppl_1-2. - DOI - PubMed
    1. Maglione D., Guerriero V., Viglietto G., Delli-Bovi P., Persico M.G. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc. Natl. Acad. Sci. USA. 1991;88:9267–9271. doi: 10.1073/pnas.88.20.9267. - DOI - PMC - PubMed

Substances