Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr:125:108892.
doi: 10.1016/j.ejrad.2020.108892. Epub 2020 Feb 13.

A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging

Affiliations

A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging

AiJun Peng et al. Eur J Radiol. 2020 Apr.

Abstract

Purpose: The type of pituitary adenoma (PA) cannot be clearly recognized with preoperative magnetic resonance imaging (MRI) but can be classified with immunohistochemical staining after surgery. In this study, a model to precisely immunohistochemically classify the PA subtypes by radiomic features based on preoperative MR images was developed.

Methods: Two hundred thirty-five pathologically diagnosed PAs, including t-box pituitary transcription factor (Tpit) family tumors (n = 55), pituitary transcription factor 1 (Pit-1) family tumors (n = 110), and steroidogenic factor 1 (SF-1) family tumors (n = 70), were retrospectively studied. T1-weighted, T2-weighted and contrast-enhanced T1-weighted images were obtained from all patients. Through imaging acquisition, feature extraction and radiomic data processing, 18 radiomic features were used to train support vector machine (SVM), k-nearest neighbors (KNN) and Naïve Bayes (NBs) models. Ten-fold cross-validation was applied to evaluate the performance of these models.

Results: The SVM model showed high performance (balanced accuracy 0.89, AUC 0.9549) whereas the KNN (balanced accuracy 0.83, AUC 0.9266) and NBs (balanced accuracy 0.80, AUC 0.9324) models displayed low performance based on the T2-weighted images. The performance of the T2-weighted images was better than that of the other two MR sequences. Additionally, significant sensitivity (P = 0.031) and specificity (P = 0.012) differences were observed when classifying the PA subtypes by T2-weighted images.

Conclusions: The SVM model was superior to the KNN and NBs models and can potentially precisely immunohistochemically classify PA subtypes with an MR-based radiomic analysis. The developed model exhibited good performance using T2-weighted images and might offer potential guidance to neurosurgeons in clinical decision-making before surgery.

Keywords: Pituitary adenomas; Pituitary transcription factor; Radiomics support vector machine.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare no conflicts of interest.

Similar articles

Cited by

MeSH terms