Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May:189:110877.
doi: 10.1016/j.colsurfb.2020.110877. Epub 2020 Feb 14.

Optically active neodymium hydroxide surface-functionalized mesoporous silica micro-cocoons for biomedical applications

Affiliations

Optically active neodymium hydroxide surface-functionalized mesoporous silica micro-cocoons for biomedical applications

Anees A Ansari et al. Colloids Surf B Biointerfaces. 2020 May.

Abstract

Neodymium hydroxide (Nd(OH)3)-surface modified mesoporous silica micro-cocoon microstructures were prepared using a facile single-step sol-gel chemical process. XRD revealed the semi-crystalline nature of the as-prepared materials. TEM and SEM micrographs exhibited highly monodisperse, non-aggregated, typical ordered mesoporous, and irregular sized cocoon-shaped micro-structures with a narrow size distribution. Optical properties, that were examined in the aqueous media, revealed a high colloidal stability and the formation of a semi-transparent colloidal solution. The colloidal solution of Nd(OH)3-surface functionalized micro-structures revealed well characteristics absorption bands of Nd3+ ions in the visible region. thus validating the successful coating of SiO2@Nd(OH)3 layer over the surface silica forming core-shell structures. Zeta potential, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) bromide, and neutral red uptake assays were applied in a dose-dependent manner to investigate the biocompatibility and toxic potential of the designed cocoon-shaped microstructures. Both the assays and the high zeta potential value demonstrated good cell viability even at high concentrations and hydrophilic conditions, indicating excellent biocompatibility and non-toxicity. These highly hydrophilic, optically active, mesoporous, biocompatible, and non-toxic cocoon-shaped microstructures could be potentially suitable candidates for optical bio-probes and drug delivery applications.

Keywords: Biocompatibility; Mesoporous silica; Neodymium hydroxide; Optically active; Toxicity.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The author reports no conflicts of interest in this work.

LinkOut - more resources