Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jun;26(3):272-283.
doi: 10.1089/ten.TEB.2019.0224.

The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications

Affiliations
Review

The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications

Michelle Griffin et al. Tissue Eng Part B Rev. 2020 Jun.

Abstract

Reconstructive surgery aims to restore tissue defects by replacing them with similar autologous tissue to achieve good clinical outcomes. However, often the defect is too large or the tissue available is limited, requiring synthetic materials to restore the anatomical shape and partial function. The utilization of three-dimensional (3D) printing allows for the manufacture of implants with complex geometries and internal architecture that more closely matches the required clinical needs. Synthetic polymers offer certain advantages over natural polymers as biomedical materials due to their ability to more closely mimic the mechanical and chemical properties of the native tissue. Synthetic polymer materials such as poly(lactic acid) and acrylonitrile butadiene styrene are easily 3D printed to generate 3D objects due to their flexibility in their chemical and mechanical properties and physical form. Polyurethanes (PUs) are widely used as short- and long-term, implantable medical devices due to their good mechanical properties, biocompatibility, and hemocompatibility. This article provides an overview on the advancement of 3D printable PU-based materials for biomedical applications. A summary of the chemical structure and synthesis of PUs is provided to explain how PUs may be processed into medical devices using additive manufacturing techniques. Currently, PUs are being explored by several 3D printing approaches, including fused filament fabrication, bioplotting, and stereolithography, to fabricate complex implants with precise patterns and shapes with fine resolution. PU scaffolds using 3D printing have shown good cell viability and tissue integration in vivo. The important limitations of PU printing are identified to stimulate future research. PUs offer a biocompatible, synthetic polymeric material that can be 3D printed to manufacture implants that are tailored to meet specific anatomical, mechanical, and biological requirements for biomedical applications.

Keywords: 3D-printing; additive manufacturing; fused deposition modeling; polyurethane; stereolithography; synthetic polymer.

PubMed Disclaimer

Publication types

LinkOut - more resources