Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun:261:114186.
doi: 10.1016/j.envpol.2020.114186. Epub 2020 Feb 17.

Effect of northern boreal forest fires on PAH fluctuations across the arctic

Affiliations

Effect of northern boreal forest fires on PAH fluctuations across the arctic

Jinmu Luo et al. Environ Pollut. 2020 Jun.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are formed by the incomplete combustion of fossil fuels and forest or biomass burning. PAHs undergo long-range atmospheric transport, as evidenced by in situ observations across the Arctic. However, monitored atmospheric concentrations of PAHs indicate that ambient PAH levels in the Arctic do not follow the declining trend of worldwide anthropogenic PAH emissions since the 2000s, suggesting missing sources of PAHs in the Arctic or other places across the Northern Hemisphere. To trace origins and causes for the increasing trend of PAHs in the Arctic, the present study reconstructed PAH emissions from forest fires in the northern boreal forest derived by combining forest carbon stocks and MODIS burned area. We examined the statistical relationships of forest biomass, MODIS burned area, emission factors, and combustion efficiency with different PAH congeners. These relationships were then employed to construct PAH emission inventories from forest biomass burning. We show that for some PAH congeners, for example, benzo[a]pyrene (BaP)-the forest-fire-induced air emissions are almost one order of magnitude higher than previous emission inventories in the Arctic. A global-scale atmospheric chemistry model, GEOS-Chem, was used to simulate air concentrations of BaP, a representative PAH congener primarily emitted from biomass burning, and to quantify the response of BaP to wildfires in the northern boreal forest. The results showed that BaP emissions from wildfires across the northern boreal forest region played a significant role in the contamination and interannual fluctuations of BaP in Arctic air. A source-tagging technique was applied in tracking the origins of BaP pollution from different northern boreal forest regions. We also show that the response of BaP pollution at different Arctic monitoring sites depends on the intensity of human activities.

Keywords: BaP; Biomass burning; Emission; Polycyclic aromatic hydrocarbons; Source apportionment.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare no competing financial interest.

Substances

LinkOut - more resources