Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Feb 19;21(4):1416.
doi: 10.3390/ijms21041416.

Brain Metastases in Lung Cancers with Emerging Targetable Fusion Drivers

Affiliations
Review

Brain Metastases in Lung Cancers with Emerging Targetable Fusion Drivers

Aaron C Tan et al. Int J Mol Sci. .

Abstract

The management of non-small cell lung cancer (NSCLC) has transformed with the discovery of therapeutically tractable oncogenic drivers. In addition to activating driver mutations, gene fusions or rearrangements form a unique sub-class, with anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) targeted agents approved as the standard of care in the first-line setting for advanced disease. There are a number of emerging fusion drivers, however, including neurotrophin kinase (NTRK), rearrangement during transfection (RET), and neuregulin 1 (NRG1) for which there are evolving high-impact systemic treatment options. Brain metastases are highly prevalent in NSCLC patients, with molecularly selected populations such as epidermal growth factor receptor (EGFR) mutant and ALK-rearranged tumors particularly brain tropic. Accordingly, there exists a substantial body of research pertaining to the understanding of brain metastases in such populations. Little is known, however, on the molecular mechanisms of brain metastases in those with other targetable fusion drivers in NSCLC. This review encompasses key areas including the biological underpinnings of brain metastases in fusion-driven lung cancers, the intracranial efficacy of novel systemic therapies, and future directions required to optimize the control and prevention of brain metastases.

Keywords: brain metastases; fusion drivers; non-small cell lung cancer; targeted therapy.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Similar articles

Cited by

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. - DOI - PubMed
    1. Berghoff A.S., Schur S., Füreder L.M., Gatterbauer B., Dieckmann K., Widhalm G., Hainfellner J., Zielinski C.C., Birner P., Bartsch R., et al. Descriptive statistical analysis of a real life cohort of 2419 patients with brain metastases of solid cancers. ESMO Open. 2016;1:e000024. doi: 10.1136/esmoopen-2015-000024. - DOI - PMC - PubMed
    1. Barnholtz-Sloan J.S., Sloan A.E., Davis F.G., Vigneau F.D., Lai P., Sawaya R.E. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 2004;22:2865–2872. doi: 10.1200/JCO.2004.12.149. - DOI - PubMed
    1. Peters S., Bexelius C., Munk V., Leighl N. The impact of brain metastasis on quality of life, resource utilization and survival in patients with non-small-cell lung cancer. Cancer Treat. Rev. 2016;45:139–162. doi: 10.1016/j.ctrv.2016.03.009. - DOI - PubMed
    1. Mok T.S., Wu Y.-L., Thongprasert S., Yang C.-H., Chu D.-T., Saijo N., Sunpaweravong P., Han B., Margono B., Ichinose Y., et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009;361:947–957. doi: 10.1056/NEJMoa0810699. - DOI - PubMed

MeSH terms