Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun;19(6):655-662.
doi: 10.1038/s41563-020-0612-0. Epub 2020 Feb 24.

Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions

Affiliations

Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions

Qiyang Lu et al. Nat Mater. 2020 Jun.

Abstract

Unlike the wide-ranging dynamic control of electrical conductivity, there does not exist an analogous ability to tune thermal conductivity by means of electric potential. The traditional picture assumes that atoms inserted into a material's lattice act purely as a source of scattering for thermal carriers, which can only reduce thermal conductivity. In contrast, here we show that the electrochemical control of oxygen and proton concentration in an oxide provides a new ability to bi-directionally control thermal conductivity. On electrochemically oxygenating the brownmillerite SrCoO2.5 to the perovskite SrCoO3-δ, the thermal conductivity increases by a factor of 2.5, whereas protonating it to form hydrogenated SrCoO2.5 effectively reduces the thermal conductivity by a factor of four. This bi-directional tuning of thermal conductivity across a nearly 10 ± 4-fold range at room temperature is achieved by using ionic liquid gating to trigger the 'tri-state' phase transitions in a single device. We elucidated the effects of these anionic and cationic species, and the resultant changes in lattice constants and lattice symmetry on thermal conductivity by combining chemical and structural information from X-ray absorption spectroscopy with thermoreflectance thermal conductivity measurements and ab initio calculations. This ability to control multiple ion types, multiple phase transitions and electronic conductivity that spans metallic through to insulating behaviour in oxides by electrical means provides a new framework for tuning thermal transport over a wide range.

PubMed Disclaimer

References

    1. Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J. & Dames, C. Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. Appl. Phys. Rev. 4, 041304 (2017).
    1. Abeles, B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131, 1906–1911 (1963).
    1. Qian, X., Gu, X., Dresselhaus, M. S. & Yang, R. Anisotropic tuning of graphite thermal conductivity by lithium intercalation. J. Phys. Chem. Lett. 7, 4744–4750 (2016).
    1. Zhu, G. et al. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. Nat. Commun. 7, 13211 (2016).
    1. Kang, J. S., Ke, M. & Hu, Y. Ionic intercalation in two-dimensional van der Waals materials: in situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Lett. 17, 1431–1438 (2017).

LinkOut - more resources